眾所周知,數(shù)學(xué)知識本身固然重要,但是對學(xué)生的后續(xù)學(xué)習(xí)、生活和工作長期起作用,并使其終身受益的是數(shù)學(xué)思想方法。在小學(xué)數(shù)學(xué)教學(xué)中,教師不能僅僅滿足于學(xué)生獲得正確知識的結(jié)論,而應(yīng)該著力于引導(dǎo)學(xué)生對知識形成過程的理解。讓學(xué)生逐步領(lǐng)會蘊涵其中的數(shù)學(xué)思想方法。
在李老師執(zhí)教的《平行四邊形》一課中,我們感覺到了教師對學(xué)生數(shù)學(xué)思想方法的滲透。在課的伊始,李老師出示了書上的校園主題圖,請學(xué)生從中找出認(rèn)識的圖形。第二步,當(dāng)學(xué)生從這個具體情境中抽象出許多的幾何圖形后,李老師又請學(xué)生找出自己認(rèn)為的四邊形,并闡述理由。從而逐漸抽象出四邊形的本質(zhì)特征:有4個角,有4條直邊。在這個環(huán)節(jié)中,我看可以看到,李老師對四邊形這一概念的教學(xué),是俺以下程序進行:1、由實物抽象為幾何圖形,建立四邊形的表象;2、在表象的基礎(chǔ)上,通過對
這一圖形的爭議,逐漸抽象出四邊形的本質(zhì)特征。3、最后對四邊形的本質(zhì)特征用語言加以概括。顯然,這一數(shù)學(xué)數(shù)學(xué)過程,既符合學(xué)生由感知到表象再到概念的認(rèn)知規(guī)律,又能讓學(xué)生從中體會到教師是如何應(yīng)用數(shù)學(xué)思想法,對有聯(lián)系的材料進行對比的,對空間形式進行抽象概括的,對教學(xué)概念進行形式化的。
在最后一環(huán)節(jié),李老師請學(xué)生對眾多四邊形進行分類時,學(xué)生的參與面不夠廣,似乎是教師與學(xué)生在一對一展開交流,使這道題沒有得到充分的利用,沒有達到預(yù)期的效果,“歸類”這一數(shù)學(xué)思想沒有得到充分的滲透。
最新文章