国产精品入口免费视频_亚洲精品美女久久久久99_波多野结衣国产一区二区三区_农村妇女色又黄一级真人片卡

高中數(shù)學教案

時間:2023-01-31 15:20:05 教案 我要投稿

高中數(shù)學教案合集15篇

  作為一名專為他人授業(yè)解惑的人民教師,通常會被要求編寫教案,借助教案可以讓教學工作更科學化。那么寫教案需要注意哪些問題呢?下面是小編精心整理的高中數(shù)學教案,希望能夠幫助到大家。

高中數(shù)學教案合集15篇

高中數(shù)學教案1

  教學目標

  理解數(shù)列的概念,掌握數(shù)列的運用

  教學重難點

  理解數(shù)列的概念,掌握數(shù)列的.運用

  教學過程

  【知識點精講】

  1、數(shù)列:按照一定次序排列的一列數(shù)(與順序有關(guān))

  2、通項公式:數(shù)列的第n項an與n之間的函數(shù)關(guān)系用一個公式來表示an=f(n)。

  (通項公式不)

  3、數(shù)列的表示:

  (1)列舉法:如1,3,5,7,9……;

  (2)圖解法:由(n,an)點構(gòu)成;

  (3)解析法:用通項公式表示,如an=2n+1

  (4)遞推法:用前n項的值與它相鄰的項之間的關(guān)系表示各項,如a1=1,an=1+2an-1

  4、數(shù)列分類:有窮數(shù)列,無窮數(shù)列;遞增數(shù)列,遞減數(shù)列,擺動數(shù)列,常數(shù)數(shù)列;有界數(shù)列,xx數(shù)列

  5、任意數(shù)列{an}的前n項和的性質(zhì)

高中數(shù)學教案2

  【教學目標】

  1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。

  2.能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。

  3.提高學生的觀察能力;培養(yǎng)學生的空間想象能力和抽象括能力。

  【教學重難點】

  教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。

  教學難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。

  【教學過程】

  1.情景導(dǎo)入

  教師提出問題,引導(dǎo)學生觀察、舉例和相互交流,提出本節(jié)課所學內(nèi)容,出示課題。

  2.展示目標、檢查預(yù)習

  3、合作探究、交流展示

 。1)引導(dǎo)學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?

 。2)組織學生分組討論,每小組選出一名同學發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

  (3)提出問題:請列舉身邊的棱柱并對它們進行分類

 。4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

 。5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。

 。6)引導(dǎo)學生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學生思考、討論、概括。

 。7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

  4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。

 。1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

  (2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?

  (3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

 。4)棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?

  (5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

  5、典型例題

  例1:判斷下列語句是否正確。

  ⑴有一個面是多邊形,其余各面都是三角形的幾何體是棱錐。

 、朴袃蓚面互相平行,其余各面都是梯形,則此幾何體是棱柱。

  答案 A B

  6、課堂檢測:

  課本P8,習題1.1 A組第1題。

  7.歸納整理

  由學生整理學習了哪些內(nèi)容

  【板書設(shè)計】

  一、柱、錐、臺、球的結(jié)構(gòu)

  二、例題

  例1

  變式1、2

  【作業(yè)布置】

  導(dǎo)學案課后練習與提高

  1.1.1柱、錐、臺、球的結(jié)構(gòu)特征

  課前預(yù)習學案

  一、預(yù)習目標:

  通過圖形探究柱、錐、臺、球的.結(jié)構(gòu)特征

  二、預(yù)習內(nèi)容:

  閱讀教材第2—6頁內(nèi)容,然后填空

 。1)多面體的概念: 叫多面體,

  叫多面體的面, 叫多面體的棱,

  叫多面體的頂點。

  ① 棱柱:兩個面 ,其余各面都是 ,并且每相鄰兩個四邊形的公共邊都 ,這些面圍成的幾何體叫作棱柱

 、诶忮F:有一個面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐

 、劾馀_:用一個 棱錐底面的平面去截棱錐, ,叫作棱臺。

 。2)旋轉(zhuǎn)體的概念: 叫旋轉(zhuǎn)體, 叫旋轉(zhuǎn)體的軸。

  ①圓柱: 所圍成的幾何體叫做圓柱

 、趫A錐: 所圍成的幾何

  體叫做圓錐

 、蹐A臺: 的部分叫圓臺

  . ④球的定義

  思考:

  (1)試分析多面體與旋轉(zhuǎn)體有何去別

 。2)球面球體有何去別

  (3)圓與球有何去別

  三、提出疑惑

  同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中

  疑惑點 疑惑內(nèi)容

高中數(shù)學教案3

  教學目標

 。1)使學生正確理解組合的意義,正確區(qū)分排列、組合問題;

 。2)使學生掌握組合數(shù)的計算公式;

 。3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;

  教學重點難點

  重點是組合的定義、組合數(shù)及組合數(shù)的公式;

  難點是解組合的應(yīng)用題.

  教學過程設(shè)計

  (-)導(dǎo)入新課

 。ń處熁顒樱┨岢鱿铝兴伎紗栴},打出字幕.

 。圩帜唬菀粭l鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

 。▽W生活動)討論并回答.

  答案提示:(1)排列;(2)組合.

 。墼u述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.

  設(shè)計意圖:組合與排列所研究的問題幾乎是平行的.上面設(shè)計的問題目的`是從排列知識中發(fā)現(xiàn)并提出新的問題.

  (二)新課講授

 。厶岢鰡栴} 創(chuàng)設(shè)情境]

  (教師活動)指導(dǎo)學生帶著問題閱讀課文.

 。圩帜唬1.排列的定義是什么?

  2.舉例說明一個組合是什么?

  3.一個組合與一個排列有何區(qū)別?

 。▽W生活動)閱讀回答.

 。ń處熁顒樱⿲φ照n文,逐一評析.

  設(shè)計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應(yīng)新的環(huán)境.

  【歸納概括 建立新知】

 。ń處熁顒樱┏薪由鲜鰡栴}的回答,展示下面知識.

 。圩帜唬菽P停簭 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.

  組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .

 。墼u述]區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

 。▽W生活動)傾聽、思索、記錄.

 。ń處熁顒樱┨岢鏊伎紗栴}.

 。弁队埃 與 的關(guān)系如何?

  (師生活動)共同探討.求從 個不同元素中取出 個元素的排列數(shù) ,可分為以下兩步:

  第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;

  第2步,求每一個組合中 個元素的全排列數(shù)為 .

  根據(jù)分步計數(shù)原理,得到

 。圩帜唬莨1:

  公式2:

 。▽W生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.

  設(shè)計意圖:本著以認識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去.

  (三)小結(jié)

 。◣熒顒樱┕餐〗Y(jié).

  本節(jié)主要內(nèi)容有

  1.組合概念.

  2.組合數(shù)計算的兩個公式.

  (四)布置作業(yè)

  1.課本作業(yè):習題10 3第1(1)、(4),3題.

  2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數(shù)學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?

  3.研究性題:

  在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?

  (五)課后點評

  在學習了排列知識的基礎(chǔ)上,本節(jié)課引進了組合概念,并推導(dǎo)出組合數(shù)公式,同時調(diào)控進行訓(xùn)練,從而培養(yǎng)學生分析問題、解決問題的能力.

  作業(yè)參考答案

  2.解;設(shè)有男同學 人,則有女同學 人,依題意有 ,由此解得 或 或2.即男同學有5人或6人,女同學相應(yīng)為3人或2人.

  3.能組成 (注意不能用 點為頂點)個四邊形, 個三角形.

  探究活動

  同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?

  解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解.

  解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:

  甲拿乙制作的賀卡時,則賀卡有3種分配方法.

  甲拿丙制作的賀卡時,則賀卡有3種分配方法.

  甲拿丁制作的賀卡時,則賀卡有3種分配方法.

  由加法原理得,賀卡分配方法有3+3+3=9種.

  解法二 可從利用排列數(shù)和組合數(shù)公式角度來考慮.這時還存在正向與逆向兩種思考途徑.

  正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).

  逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種).

高中數(shù)學教案4

  高中數(shù)學趣味競賽題(共10題)

  1 、撒謊的有幾人

  5個高中生有,她們面對學校的新聞采訪說了如下的話:

  愛:“我還沒有談過戀愛! 靜香:“愛撒謊了。”

  瑪麗:“我曾經(jīng)去過昆明! 惠美:“瑪麗在撒謊!

  千葉子:“瑪麗和惠美都在撒謊! 那么,這5個人之中到底有幾個人在撒謊呢?

  2、她們到底是誰

  有天使、惡魔、人三者,天使時刻都說真話,惡魔時時刻刻都說假話,人呢,有時候說真話,有時候說假話。

  穿黑色衣服的女子說:“我不是天使! 穿藍色衣服的女子說:“我不是人。” 穿白色衣服的女子說:“我不是惡魔。”那么,這三人到底分別是誰呢?

  3、半只小貓

  聽說祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來到祖父家。可是,只剩下1只小貓了。

  “一共生了幾只小貓呀?” “猜猜看,要是猜中了,就把剩下的這只小貓給你。附近的寵物店聽說以后,馬上來買走了所有小貓的一半和半只! “半只?”“是啊,然后,鄰居家的老奶奶無論如何都要,所以就把剩下的一半和另外半只給了她。這就是只剩下1只小貓的原因。那么你想想看,一共生了幾只小貓呢?

  4、被蟲子吃掉的算式

  一只愛吃墨水的蟲子把下圖的算式中的數(shù)字全部吃掉了。當然,沒有數(shù)字的'部分它沒有吃(因為沒有墨水)。

  那么,請問原來的算式是什么樣子的呢?

  5、巧動火柴

  用16根火柴擺成5個正方形。請移動2根火柴,

  使

  正形變成4。

  6、折過來的角

  把正三角形的紙如圖那樣折過來時,角?的度數(shù)是多少度?

  7、星形角之和

  求星形尖端的角度之和。

  8、!雙胞胎?

  丈夫臨死前,給有身孕的妻子留下遺言說,生的是男孩就給他財產(chǎn)的 2/3 、如果生的是女孩就給他財產(chǎn)的 2/5 、剩下的給妻子。

  結(jié)果,生出來的是孿生兄妹——雙胞胎。這可難壞了妻子,3個人怎么分財產(chǎn)好呢?

  9、贈送和降價哪個更好?

  1罐100元的咖啡,“買5罐送1罐”和“買5罐便宜20%”這兩種促銷方法哪一種好呢?還是兩種方法一樣好?

  10、折成15度

  用折紙做成45度很簡單是吧。那么,請折成15度,你會嗎?

高中數(shù)學教案5

  【課題名稱】

  《等差數(shù)列》的導(dǎo)入

  【授課年級】

  高中二年級

  【教學重點】

  理解等差數(shù)列的概念,能夠運用等差數(shù)列的定義判斷一個數(shù)列是否為等差數(shù)列。

  【教學難點】

  等差數(shù)列的性質(zhì)、等差數(shù)列“等差”特點的理解,

  【教具準備】多媒體課件、投影儀

  【三維目標】

  ㈠知識目標:

  了解公差的概念,明確一個等差數(shù)列的限定條件,能根據(jù)定義判斷一個等差數(shù)列是否是一個等差數(shù)列;

  ㈡能力目標:

  通過尋找等差數(shù)列的共同特征,培養(yǎng)學生的觀察力以及歸納推理的能力;

  ㈢情感目標:

  通過對等差數(shù)列概念的歸納概括,培養(yǎng)學生的觀察、分析資料的能力。

  【教學過程】

  導(dǎo)入新課

  師:上兩節(jié)課我們已經(jīng)學習了數(shù)列的定義以及給出表示數(shù)列的幾種方法—列舉法、通項法,遞推公式、圖像法。這些方法分別從不同的角度反映了數(shù)列的特點。下面我們觀察以下的幾個數(shù)列的例子:

  (1)我們經(jīng)常這樣數(shù)數(shù),從0開始,每個5個數(shù)可以得到數(shù)列:0,5,10,15,20,()

  (2)2000年,在澳大利亞悉尼舉行的奧運會上,女子舉重被正式列為比賽項目,該項目工設(shè)置了7個級別,其中較輕的4個級別體重組成的數(shù)列(單位:kg)為48,53,58,63,()試問第五個級別體重多少?

  (3)為了保證優(yōu)質(zhì)魚類有良好的`生活環(huán)境,水庫管理員定期放水清庫以清除水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個數(shù)列:18,15.5,13,10.5,8,(),則第六個數(shù)應(yīng)為多少?

  (4)10072,10144,10216,(),10360

  請同學們回答以上的四個問題

  生:第一個數(shù)列的第6項為25,第二個數(shù)列的第5個數(shù)為68,第三個數(shù)列的第6個數(shù)為5.5,第四個數(shù)列的第4個數(shù)為10288。

  師:我來問一下,你是依據(jù)什么得到了這幾個數(shù)的呢?請以第二個數(shù)列為例說明一下。

  生:第二個數(shù)列的后一項總比前一項多5,依據(jù)這個規(guī)律我就得到了這個數(shù)列的第5個數(shù)為68.

  師:說的很好!同學們再仔細地觀察一下以上的四個數(shù)列,看看以上的四個數(shù)列是否有什么共同特征?請注意,是共同特征。

  生1:相鄰的兩項的差都等于同一個常數(shù)。

  師:很好!那作差是否有順序?是否可以顛倒?

  生2:作差的順序是后項減去前項,不能顛倒!

  師:正如生1的總結(jié),這四個數(shù)列有共同的特征:從第二項起,每一項與它的前一項的差都等于同一個常數(shù)(即等差)。我們叫這樣的數(shù)列為等差數(shù)列。這就是我們這節(jié)課要研究的內(nèi)容。

  推進新課

  等差數(shù)列的定義:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差都等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等差數(shù)列的公差,公差常用字母d表示。從剛才的分析,同學們應(yīng)該注意公差d一定是由后項減前項。

  師:有哪個同學知道定義中的關(guān)鍵字是什么?

  生2:“從第二項起”和“同一個常數(shù)”

高中數(shù)學教案6

  教學目標:

  1、理解并掌握曲線在某一點處的切線的概念;

  2、理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法;

  3、理解切線概念實際背景,培養(yǎng)學生解決實際問題的能力和培養(yǎng)學生轉(zhuǎn)化

  問題的能力及數(shù)形結(jié)合思想。

  教學重點:

  理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法。

  教學難點:

  用“無限逼近”、“局部以直代曲”的思想理解某一點處切線的斜率。

  教學過程:

  一、問題情境

  1、問題情境。

  如何精確地刻畫曲線上某一點處的變化趨勢呢?

  如果將點P附近的曲線放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去有點像是直線。

  如果將點P附近的曲線再放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去幾乎成了直線。事實上,如果繼續(xù)放大,那么曲線在點P附近將逼近一條確定的直線,該直線是經(jīng)過點P的所有直線中最逼近曲線的一條直線。

  因此,在點P附近我們可以用這條直線來代替曲線,也就是說,點P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。

  2、探究活動。

  如圖所示,直線l1,l2為經(jīng)過曲線上一點P的兩條直線,

 。1)試判斷哪一條直線在點P附近更加逼近曲線;

  (2)在點P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?

 。3)在點P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?

  二、建構(gòu)數(shù)學

  切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點,直線PQ稱為曲線的割線。 隨著點Q沿曲線C向點P運動,割線PQ在點P附近逼近曲線C,當點Q無限逼近點P時,直線PQ最終就成為經(jīng)過點P處最逼近曲線的直線l,這條直線l也稱為曲線在點P處的切線。這種方法叫割線逼近切線。

  思考:如上圖,P為已知曲線C上的一點,如何求出點P處的.切線方程?

  三、數(shù)學運用

  例1 試求在點(2,4)處的切線斜率。

  解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),

  則割線PQ的斜率為:

  當Q沿曲線逼近點P時,割線PQ逼近點P處的切線,從而割線斜率逼近切線斜率;

  當Q點橫坐標無限趨近于P點橫坐標時,即xQ無限趨近于2時,kPQ無限趨近于常數(shù)4。

  從而曲線f(x)=x2在點(2,4)處的切線斜率為4。

  解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:

  當?x無限趨近于0時,kPQ無限趨近于常數(shù)4,從而曲線f(x)=x2,在點(2,4)處的切線斜率為4。

  練習 試求在x=1處的切線斜率。

  解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:

  當?x無限趨近于0時,kPQ無限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。

  小結(jié) 求曲線上一點處的切線斜率的一般步驟:

  (1)找到定點P的坐標,設(shè)出動點Q的坐標;

  (2)求出割線PQ的斜率;

 。3)當時,割線逼近切線,那么割線斜率逼近切線斜率。

  思考 如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?

  解 設(shè)

  所以,當無限趨近于0時,無限趨近于點處的切線的斜率。

  變式訓(xùn)練

  1。已知,求曲線在處的切線斜率和切線方程;

  2。已知,求曲線在處的切線斜率和切線方程;

  3。已知,求曲線在處的切線斜率和切線方程。

  課堂練習

  已知,求曲線在處的切線斜率和切線方程。

  四、回顧小結(jié)

  1、曲線上一點P處的切線是過點P的所有直線中最接近P點附近曲線的直線,則P點處的變化趨勢可以由該點處的切線反映(局部以直代曲)。

  2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點處的切線斜率和方程。

  五、課外作業(yè)

高中數(shù)學教案7

  教學目標

  熟練掌握三角函數(shù)式的求值

  教學重難點

  熟練掌握三角函數(shù)式的求值

  教學過程

  【知識點精講】

  三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形

  三角函數(shù)式的求值的類型一般可分為:

  (1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角

  (2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解

  (3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

  (4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之

  三角函數(shù)式常用化簡方法:切割化弦、高次化低次

  注意點:靈活角的變形和公式的變形

  重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論

  【例題選講】

  課堂小結(jié)】

  三角函數(shù)式的求值的.關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形

  三角函數(shù)式的求值的類型一般可分為:

  (1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角

  (2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解

  (3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

  (4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之

  三角函數(shù)式常用化簡方法:切割化弦、高次化低次

  注意點:靈活角的變形和公式的變形

  重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論

高中數(shù)學教案8

  一、教學目標

  知識與技能:

  理解任意角的概念(包括正角、負角、零角)與區(qū)間角的概念。

  過程與方法:

  會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。

  情感態(tài)度與價值觀:

  1、提高學生的推理能力;

  2、培養(yǎng)學生應(yīng)用意識。

  二、教學重點、難點:

  教學重點:

  任意角概念的理解;區(qū)間角的集合的書寫。

  教學難點:

  終邊相同角的集合的表示;區(qū)間角的集合的書寫。

  三、教學過程

 。ㄒ唬⿲(dǎo)入新課

  1、回顧角的定義

 、俳堑牡谝环N定義是有公共端點的兩條射線組成的圖形叫做角。

 、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

 。ǘ┙虒W新課

  1、角的有關(guān)概念:

 、俳堑腵定義:

  角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。

  ②角的名稱:

  注意:

 、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡化成“α ”;

 、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;

 、墙堑母拍罱(jīng)過推廣后,已包括正角、負角和零角。

  ⑤練習:請說出角α、β、γ各是多少度?

  2、象限角的概念:

  ①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。

  例1、如圖⑴⑵中的角分別屬于第幾象限角?

高中數(shù)學教案9

  1. 你能遵守學校的規(guī)章制度,按時上學,按時完成作業(yè),書寫比較端正,課堂上你也坐得比較端正。如果在學習上能夠更加主動一些,尋找適合自己的學習

  2. 你尊敬老師、團結(jié)同學、熱愛勞動、關(guān)心集體,所以大家都喜歡你。能嚴格遵守學校的各項規(guī)章制度。學習不夠刻苦,有畏難情緒。學習方法有待改進,掌握知識不夠牢固,思維能力要進一步培養(yǎng)和提高。學習成績比上學期有一定的進步。平時能積極參加體育鍛煉和有益的文娛活動。今后如果能注意分配好學習時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學生。

  3. 你性格活潑開朗,總是帶著甜甜的笑容,你能與同學友愛相處,待人有禮,能虛心接受老師的教導(dǎo)。大多數(shù)的時候你都能遵守紀律,偶爾會犯一些小錯誤。有時上課不夠留心,還有些小動作,你能想辦法控制自己嗎?一開學老師就發(fā)現(xiàn)你的作業(yè)干凈又整齊,你的字清秀又漂亮。但學習成績不容樂觀,需努力提高學習成績。希望能從根本上認識到自己的不足,在課堂上能認真聽講,開動腦筋,遇到問題敢于請教。

  4. 你熱情大方,為人豪爽,身上透露出女生少有的霸氣,作為班干部,你會提醒同學們及時安靜,對學習態(tài)度端正,及時完成作業(yè),但是少了點耐心,試著把心沉下來,上課集中注意力,跟著老師的思路走,一步一個腳印,一定能走出你自己絢麗的人生!

  5. 學習態(tài)度端正,效率高,合理分配時間,學習生活兩不誤,善良熱情,熱愛生活,樂于助人,與周圍同學相處關(guān)系融洽。能嚴格遵守學校的各項規(guī)章制度。上課能專心聽講,認真做好筆記,課后能按時完成作業(yè)。記憶力好,自學能力較強。希望你能更主動地學習,多思,多問,多練,大膽向老師和同學請教,注意采用科學的學習方法,提高學習效率,一定能取得滿意的成績!

  6. 作為本班的班長,你對待班級工作能夠認真負責,積極配合老師和班委工作,集體榮譽感很強,人際關(guān)系很好,待人真誠,熱心幫助人,老師十分欣賞你的善良和聰明,希望在以后能夠積極發(fā)揮自己的所長,帶領(lǐng)全班不僅在班級管理上有進步,而且能在學習上也能成為全班的領(lǐng)頭雁,在下學期能取得更大的進步!

  7. 身為班委的你,對工作認真負責,以身作則,性格和善,與同學關(guān)系融洽,積極參加各項活動,不太張揚的你顯得穩(wěn)重和踏實,在學習上,你認真聽課,及時完成各科作業(yè),但是我總覺得你的學習還不夠主動,沒有形成自己的'一套方法,若從被動的學習中解脫出來,應(yīng)該穩(wěn)定在班級前五名啊!加油!

  8. 你是個懂禮貌明事理的孩子,你能嚴格遵守班級紀律,熱愛集體,對待學習態(tài)度端正,上課能夠?qū)P穆犞v,課下能夠認真完成作業(yè)。你的學習方法有待改進,若能做到學習時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養(yǎng)和提高。只要有恒心,有毅力,老師相信你會在各方面取得長足進步!

  9. 你為人熱情大方,能和同學友好相處。你為人正直誠懇,尊敬老師,關(guān)心班集體,待人有禮,能認真聽從老師的教導(dǎo),自覺遵守學校的各項規(guī)章制度,抵制各種不良思想。有集體榮譽感,樂于為集體做事。學習刻苦,成績有所提高。上課能專心聽講,思維活躍,積極回答問題,積極思考,認真做好筆記。今后如果能注意分配好學習時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學生。

  10. 記得和你說過,你是個太聰明的孩子,你反應(yīng)敏捷,活潑靈動。但是做學問是需要靜下心來老老實實去鉆研的,容不得賣弄小聰明和半點頑皮話。要知道,學如逆水行舟,不進則退;心似平原野馬,易放難收!望你下學期重新抖擻精神早日進入狀態(tài),不辜負關(guān)愛你的人對你的殷殷期盼。

高中數(shù)學教案10

  教學目標:

  1.了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系.

  2.會求一些簡單函數(shù)的反函數(shù).

  3.在嘗試、探索求反函數(shù)的過程中,深化對概念的認識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學思想方法的認識.

  4.進一步完善學生思維的深刻性,培養(yǎng)學生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力.

  教學重點:求反函數(shù)的方法.

  教學難點:反函數(shù)的概念.

  教學過程

  教學活動

  設(shè)計意圖一、創(chuàng)設(shè)情境,引入新課

  1.復(fù)習提問

 、俸瘮(shù)的概念

 、趛=f(x)中各變量的意義

  2.同學們在物理課學過勻速直線運動的位移和時間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù).在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù).什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學習的內(nèi)容.

  3.板書課題

  由實際問題引入新課,激發(fā)了學生學習興趣,展示了教學目標.這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性.

  二、實例分析,組織探究

  1.問題組一:

  (用投影給出函數(shù)與;與()的圖象)

  (1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對稱;與()的圖象也關(guān)于直線y=x對稱.是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算.同樣,與()也互為逆運算.)

  (2)由,已知y能否求x?

  (3)是否是一個函數(shù)?它與有何關(guān)系?

  (4)與有何聯(lián)系?

  2.問題組二:

  (1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?

  3.滲透反函數(shù)的概念.

  (教師點明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)

  從學生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學生的認知特點,有利于培養(yǎng)學生抽象、概括的能力.

  通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設(shè)計問題,使學生對反函數(shù)有一個直觀的粗略印象,為進一步抽象反函數(shù)的概念奠定基礎(chǔ).

  三、師生互動,歸納定義

  1.(根據(jù)上述實例,教師與學生共同歸納出反函數(shù)的定義)

  函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域為 C.我們根據(jù)這個函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來,得到 x = j (y) .如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù).這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù).記作: .考慮到"用 x表示自變量, y表示函數(shù)"的習慣,將中的x與y對調(diào)寫成.

  2.引導(dǎo)分析:

  1)反函數(shù)也是函數(shù);

  2)對應(yīng)法則為互逆運算;

  3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);

  4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

  5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

  6)要理解好符號f;

  7)交換變量x、y的原因.

  3.兩次轉(zhuǎn)換x、y的對應(yīng)關(guān)系

  (原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)

  4.函數(shù)與其反函數(shù)的關(guān)系

  函數(shù)y=f(x)

  函數(shù)

  定義域

  A

  C

  值 域

  C

  A

  四、應(yīng)用解題,總結(jié)步驟

  1.(投影例題)

  【例1】求下列函數(shù)的反函數(shù)

  (1)y=3x-1 (2)y=x 1

  【例2】求函數(shù)的反函數(shù).

  (教師板書例題過程后,由學生總結(jié)求反函數(shù)步驟.)

  2.總結(jié)求函數(shù)反函數(shù)的步驟:

  1° 由y=f(x)反解出x=f(y).

  2° 把x=f(y)中 x與y互換得.

  3° 寫出反函數(shù)的定義域.

  (簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?

  (2)的反函數(shù)是________.

  (3)(x<0)的反函數(shù)是__________.

  在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的`認識,與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會反函數(shù).在剖析定義的過程中,讓學生體會函數(shù)與方程、一般到特殊的數(shù)學思想,并對數(shù)學的符號語言有更好的把握.

  通過動畫演示,表格對照,使學生對反函數(shù)定義從感性認識上升到理性認識,從而消化理解.

  通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結(jié),培養(yǎng)學生分析、思考的習慣,以及歸納總結(jié)的能力.

  題目的設(shè)計遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進.并體現(xiàn)了對定義的反思理解.學生思考練習,師生共同分析糾正.

  五、鞏固強化,評價反饋

  1.已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)

  (1)y=-2x 3(xR) (2)y=-(xR,且x)

  ( 3 ) y=(xR,且x)

  2.已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值.

  五、反思小結(jié),再度設(shè)疑

  本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟.互為反函數(shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究.

  (讓學生談一下本節(jié)課的學習體會,教師適時點撥)

  進一步強化反函數(shù)的概念,并能正確求出反函數(shù).反饋學生對知識的掌握情況,評價學生對學習目標的落實程度.具體實踐中可采取同學板演、分組競賽等多種形式調(diào)動學生的積極性."問題是數(shù)學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂.

  六、作業(yè)

  習題2.4第1題,第2題

  進一步鞏固所學的知識.

  教學設(shè)計說明

  "問題是數(shù)學的心臟".一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程.本節(jié)教案通過一個物理學中的具體實例引入反函數(shù),進而又通過若干函數(shù)的圖象進一步加以誘導(dǎo)剖析,最終形成概念.

  反函數(shù)的概念是教學中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號.由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質(zhì)上去把握反函數(shù)的概念.為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關(guān)系預(yù)先揭示,進而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進而得出概念,這正是數(shù)學研究的順序,符合學生認知規(guī)律,有助于概念的建立與形成.另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用.通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環(huán)節(jié),充分調(diào)動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養(yǎng)學生的逆向思維.使學生自然成為學習的主人。

高中數(shù)學教案11

  教學目標:

  1。了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系。

  2。會求一些簡單函數(shù)的反函數(shù)。

  3。在嘗試、探索求反函數(shù)的過程中,深化對概念的認識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學思想方法的認識。

  4。進一步完善學生思維的深刻性,培養(yǎng)學生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力。

  教學重點:

  求反函數(shù)的方法。

  教學難點:

  反函數(shù)的概念。

  教學過程:

  教學活動

  設(shè)計意圖一、創(chuàng)設(shè)情境,引入新課

  1。復(fù)習提問

 、俸瘮(shù)的概念

  ②y=f(x)中各變量的意義

  2。同學們在物理課學過勻速直線運動的位移和時間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù)。在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù)。什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學習的內(nèi)容。

  3。板書課題

  由實際問題引入新課,激發(fā)了學生學習興趣,展示了教學目標。這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性。

  二、實例分析,組織探究

  1。問題組一:

  (用投影給出函數(shù)與;與()的圖象)

  (1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對稱;與()的圖象也關(guān)于直線y=x對稱。是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算。同樣,與()也互為逆運算。)

 。2)由,已知y能否求x?

 。3)是否是一個函數(shù)?它與有何關(guān)系?

  (4)與有何聯(lián)系?

  2。問題組二:

  (1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

 。2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?

  3。滲透反函數(shù)的概念。

 。ń處燑c明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)

  從學生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學生的認知特點,有利于培養(yǎng)學生抽象、概括的能力。

  通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設(shè)計問題,使學生對反函數(shù)有一個直觀的粗略印象,為進一步抽象反函數(shù)的概念奠定基礎(chǔ)。

  三、師生互動,歸納定義

  1。(根據(jù)上述實例,教師與學生共同歸納出反函數(shù)的定義)

  函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域為 C。我們根據(jù)這個函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來,得到 x = j (y) 。如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù)。這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù)。記作: ?紤]到"用 x表示自變量, y表示函數(shù)"的習慣,將中的x與y對調(diào)寫成。

  2。引導(dǎo)分析:

  1)反函數(shù)也是函數(shù);

  2)對應(yīng)法則為互逆運算;

  3)定義中的"如果"意味著對于一個任意的`函數(shù)y=f(x)來說不一定有反函數(shù);

  4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

  5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

  6)要理解好符號f;

  7)交換變量x、y的原因。

  3。兩次轉(zhuǎn)換x、y的對應(yīng)關(guān)系

 。ㄔ瘮(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)

  4。函數(shù)與其反函數(shù)的關(guān)系

  函數(shù)y=f(x)

  函數(shù)

  定義域

  A

  C

  值 域

  C

  A

  四、應(yīng)用解題,總結(jié)步驟

  1。(投影例題)

  【例1】求下列函數(shù)的反函數(shù)

 。1)y=3x—1 (2)y=x 1

  【例2】求函數(shù)的反函數(shù)。

  (教師板書例題過程后,由學生總結(jié)求反函數(shù)步驟。)

  2?偨Y(jié)求函數(shù)反函數(shù)的步驟:

  1° 由y=f(x)反解出x=f(y)。

  2° 把x=f(y)中 x與y互換得。

  3° 寫出反函數(shù)的定義域。

 。ê営洖椋悍唇、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?

 。2)的反函數(shù)是________。

  (3)(x<0)的反函數(shù)是__________。

  在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會反函數(shù)。在剖析定義的過程中,讓學生體會函數(shù)與方程、一般到特殊的數(shù)學思想,并對數(shù)學的符號語言有更好的把握。

  通過動畫演示,表格對照,使學生對反函數(shù)定義從感性認識上升到理性認識,從而消化理解。

  通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結(jié),培養(yǎng)學生分析、思考的習慣,以及歸納總結(jié)的能力。

  題目的設(shè)計遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進。并體現(xiàn)了對定義的反思理解。學生思考練習,師生共同分析糾正。

  五、鞏固強化,評價反饋

  1。已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)

 。1)y=—2x 3(xR) (2)y=—(xR,且x)

  ( 3 ) y=(xR,且x)

  2。已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值。

  五、反思小結(jié),再度設(shè)疑

  本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟;榉春瘮(shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究。

 。ㄗ寣W生談一下本節(jié)課的學習體會,教師適時點撥)

  進一步強化反函數(shù)的概念,并能正確求出反函數(shù)。反饋學生對知識的掌握情況,評價學生對學習目標的落實程度。具體實踐中可采取同學板演、分組競賽等多種形式調(diào)動學生的積極性。"問題是數(shù)學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂。

  六、作業(yè)

  習題2。4 第1題,第2題

  進一步鞏固所學的知識。

  教學設(shè)計說明

  "問題是數(shù)學的心臟"。一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程。本節(jié)教案通過一個物理學中的具體實例引入反函數(shù),進而又通過若干函數(shù)的圖象進一步加以誘導(dǎo)剖析,最終形成概念。

  反函數(shù)的概念是教學中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號。由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質(zhì)上去把握反函數(shù)的概念。為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關(guān)系預(yù)先揭示,進而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進而得出概念,這正是數(shù)學研究的順序,符合學生認知規(guī)律,有助于概念的建立與形成。另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用。通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環(huán)節(jié),充分調(diào)動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養(yǎng)學生的逆向思維。使學生自然成為學習的主人。

高中數(shù)學教案12

  一、單元教學內(nèi)容

  (1)算法的基本概念

  (2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)

  (3)算法的基本語句:輸入、輸出、賦值、條件、循環(huán)語句

  二、單元教學內(nèi)容分析

  算法是數(shù)學及其應(yīng)用的重要組成部分,是計算科學的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學技術(shù)、社會發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學素養(yǎng)。需要特別指出的是,中國古代數(shù)學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對具體數(shù)學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設(shè)計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力

  三、單元教學課時安排:

  1、算法的基本概念3課時

  2、程序框圖與算法的基本結(jié)構(gòu)5課時

  3、算法的基本語句2課時

  四、單元教學目標分析

  1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

  2、通過模仿、操作、探索,經(jīng)歷通過設(shè)計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。

  3、經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環(huán)語句,進一步體會算法的基本思想。

  4、通過閱讀中國古代數(shù)學中的算法案例,體會中國古代數(shù)學對世界數(shù)學發(fā)展的貢獻。

  五、單元教學重點與難點分析

  1、重點

  (1)理解算法的含義(2)掌握算法的基本結(jié)構(gòu)(3)會用算法語句解決簡單的實際問題

  2、難點

  (1)程序框圖(2)變量與賦值(3)循環(huán)結(jié)構(gòu)(4)算法設(shè)計

  六、單元總體教學方法

  本章教學采用啟發(fā)式教學,輔以觀察法、發(fā)現(xiàn)法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領(lǐng)會及一定的練習才能掌握本節(jié)知識。

  七、單元展開方式與特點

  1、展開方式

  自然語言→程序框圖→算法語句

  2、特點

  (1)螺旋上升分層遞進(2)整合滲透前呼后應(yīng)(3)三線合一橫向貫通(4)彈性處理多樣選擇

  八、單元教學過程分析

  1.算法基本概念教學過程分析

  對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的'思想,了解算法的含義,能用自然語言描述算法。

  2.算法的流程圖教學過程分析

  對生活中的實際問題通過模仿、操作、探索,經(jīng)歷通過設(shè)計流程圖表達解決問題的過程,了解算法和程序語言的區(qū)別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會用流程圖表示算法。

  3.基本算法語句教學過程分析

  經(jīng)歷將具體生活中問題的流程圖轉(zhuǎn)化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環(huán)語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,

  4.通過閱讀中國古代數(shù)學中的算法案例,體會中國古代數(shù)學對世界數(shù)學發(fā)展的貢獻。

  九、單元評價設(shè)想

  1.重視對學生數(shù)學學習過程的評價

  關(guān)注學生在數(shù)學語言的學習過程中,是否對用集合語言描述數(shù)學和現(xiàn)實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發(fā)展自己運用數(shù)學語言進行交流的能力。

  2.正確評價學生的數(shù)學基礎(chǔ)知識和基本技能

  關(guān)注學生在本章(節(jié))及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結(jié)構(gòu)、基本語句、基本思想等。算法思想將貫穿高中數(shù)學課程的相關(guān)部分,在其他相關(guān)部分還將進一步學習算法

高中數(shù)學教案13

  教學目標

  (1)了解算法的含義,體會算法思想。

  (2)會用自然語言和數(shù)學語言描述簡單具體問題的算法;

  (3)學習有條理地、清晰地表達解決問題的步驟,培養(yǎng)邏輯思維能力與表達能力。

  教學重難點

  重點:算法的含義、解二元一次方程組的算法設(shè)計。

  難點:把自然語言轉(zhuǎn)化為算法語言。

  情境導(dǎo)入

  電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發(fā)百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務(wù),一般要按步驟完成以下幾步:

  第一步:觀察、等待目標出現(xiàn)(用望遠鏡或瞄準鏡);

  第二步:瞄準目標;

  第三步:計算(或估測)風速、距離、空氣濕度、空氣密度;

  第四步:根據(jù)第三步的結(jié)果修正彈著點;

  第五步:開槍;

  第六步:迅速轉(zhuǎn)移(或隱蔽)

  以上這種完成狙擊任務(wù)的方法、步驟在數(shù)學上我們叫算法。

  課堂探究

  預(yù)習提升

  1、定義:算法可以理解為由基本運算及規(guī)定的運算順序所構(gòu)成的完整的解題步驟,或者看成按照要求設(shè)計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題。

  2、描述方式

  自然語言、數(shù)學語言、形式語言(算法語言)、框圖。

  3、算法的要求

  (1)寫出的算法,必須能解決一類問題,且能重復(fù)使用;

  (2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過有限步后能得出結(jié)果。

  4、算法的特征

  (1)有限性:一個算法應(yīng)包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束。

  (2)確定性:算法的計算規(guī)則及相應(yīng)的計算步驟必須是唯一確定的。

  (3)可行性:算法中的每一個步驟都是可以在有限的時間內(nèi)完成的基本操作,并能得到確定的結(jié)果。

  (4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個步驟只有一個確定的后續(xù)。

  (5)不唯一性:解決同一問題的算法可以是不唯一的

  課堂典例講練

  命題方向1對算法意義的理解

  例1、下列敘述中,

 、僦矘湫枰\苗、挖坑、栽苗、澆水這些步驟;

 、诎错樞蜻M行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;

 、蹚那鄭u乘動車到濟南,再從濟南乘飛機到倫敦觀看奧運會開幕式;

 、3x>x+1;

  ⑤求所有能被3整除的正數(shù),即3,6,9,12。

  能稱為算法的個數(shù)為(  )

  A、2

  B、3

  C、4

  D、5

  【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。

  【答案】B

  [規(guī)律總結(jié)]

  1、正確理解算法的概念及其特點是解決問題的關(guān)鍵、

  2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問題、

  【變式訓(xùn)練】下列對算法的理解不正確的是________

 、僖粋算法應(yīng)包含有限的步驟,而不能是無限的

 、谒惴ǹ梢岳斫鉃橛苫具\算及規(guī)定的運算順序構(gòu)成的完整的解題步驟

 、鬯惴ㄖ械拿恳徊蕉紤(yīng)當有效地執(zhí)行,并得到確定的結(jié)果

 、芤粋問題只能設(shè)計出一個算法

  【解析】由算法的有限性指包含的步驟是有限的故①正確;

  由算法的明確性是指每一步都是確定的故②正確;

  由算法的每一步都是確定的,且每一步都應(yīng)有確定的結(jié)果故③正確;

  由對于同一個問題可以有不同的算法故④不正確。

  【答案】④

  命題方向2解方程(組)的算法

  例2、給出求解方程組的一個算法。

  [思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計算機上實現(xiàn),我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的`解)解線性方程組、

  [規(guī)范解答]方法一:算法如下:

  第一步,①×(-2)+②,得(-2+5)y=-14+11

  即方程組可化為

  第二步,解方程③,可得y=-1,④

  第三步,將④代入①,可得2x-1=7,x=4

  第四步,輸出4,-1

  方法二:算法如下:

  第一步,由①式可以得到y(tǒng)=7-2x,⑤

  第二步,把y=7-2x代入②,得x=4

  第三步,把x=4代入⑤,得y=-1

  第四步,輸出4,-1

  [規(guī)律總結(jié)]1、本題用了2種方法求解,對于問題的求解過程,我們既要強調(diào)對“通法、通解”的理解,又要強調(diào)對所學知識的靈活運用。

  2、設(shè)計算法時,經(jīng)常遇到解方程(組)的問題,一般是按照數(shù)學上解方程(組)的方法進行設(shè)計,但應(yīng)注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據(jù)求解步驟設(shè)計算法步驟。

  【變式訓(xùn)練】

  【解】算法如下:S1,①+2×②得5x=1;③

  S2,解③得x=;

  S3,②-①×2得5y=3;④

  S4,解④得y=;

  命題方向3篩選問題的算法設(shè)計

  例3、設(shè)計一個算法,對任意3個整數(shù)a、b、c,求出其中的最小值、

  [思路分析]比較a,b比較m與c―→最小數(shù)

  [規(guī)范解答]算法步驟如下:

  1、比較a與b的大小,若a

  2、比較m與c的大小,若m

  [規(guī)律總結(jié)]求最小(大)數(shù)就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數(shù)中篩選出滿足要求的一個。

  【變式訓(xùn)練】在下列數(shù)字序列中,寫出搜索89的算法:

  21,3,0,9,15,72,89,91,93

  [解析]1、先找到序列中的第一個數(shù)m,m=21;

  2、將m與89比較,是否相等,如果相等,則搜索到89;

  3、如果m與89不相等,則往下執(zhí)行;

  4、繼續(xù)將序列中的其他數(shù)賦給m,重復(fù)第2步,直到搜索到89。

  命題方向4非數(shù)值性問題的算法

  例4、一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會吃掉羚羊。

  (1)設(shè)計安全渡河的算法;

  (2)思考每一步算法所遵循的共同原則是什么?

高中數(shù)學教案14

  教學目標

 。1)了解線性規(guī)劃的意義以及線性約束條件、線性目標函數(shù)、線性規(guī)化問題、可行解、可行域以及最優(yōu)解等基本概念;

 。2)了解線性規(guī)劃問題的圖解法,并能應(yīng)用它解決一些簡單的實際問題;

 。3)培養(yǎng)學生觀察、聯(lián)想以及作圖的能力,滲透集合、化歸、數(shù)形結(jié)合的'數(shù)學思想,提高學生“建!焙徒鉀Q實際問題的能力;

 。4)結(jié)合教學內(nèi)容,培養(yǎng)學生學習數(shù)學的興趣和“用數(shù)學”的意識,激勵學生勇于創(chuàng)新.

  重點難點

  理解二元一次不等式表示平面區(qū)域是教學重點。

  如何擾實際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答是教學難點。

  教學步驟

 。ㄒ唬┮胄抡n

  我們已研究過以二元一次不等式組為約束條件的二元線性目標函數(shù)的線性規(guī)劃問題。那么是否有多個兩個變量的線性規(guī)劃問題呢?又什么樣的問題不用線性規(guī)劃知識來解決呢?

高中數(shù)學教案15

  [核心必知]

  1、預(yù)習教材,問題導(dǎo)入

  根據(jù)以下提綱,預(yù)習教材P6~P9,回答下列問題、

 。1)常見的程序框有哪些?

  提示:終端框(起止框),輸入、輸出框,處理框,判斷框、

 。2)算法的基本邏輯結(jié)構(gòu)有哪些?

  提示:順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)、

  2、歸納總結(jié),核心必記

 。1)程序框圖

  程序框圖又稱流程圖,是一種用程序框、流程線及文字說明來表示算法的圖形、

  在程序框圖中,一個或幾個程序框的組合表示算法中的一個步驟;帶有方向箭頭的流程線將程序框連接起來,表示算法步驟的執(zhí)行順序、

  (2)常見的程序框、流程線及各自表示的功能

  圖形符號名稱功能

  終端框(起止框)表示一個算法的起始和結(jié)束

  輸入、輸出框表示一個算法輸入和輸出的信息

  處理框(執(zhí)行框)賦值、計算

  判斷框判斷某一條件是否成立,成立時在出口處標明“是”或“Y”;不成立時標明“否”或“N”

  流程線連接程序框

  ○連接點連接程序框圖的兩部分

 。3)算法的基本邏輯結(jié)構(gòu)

 、偎惴ǖ娜N基本邏輯結(jié)構(gòu)

  算法的三種基本邏輯結(jié)構(gòu)為順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),盡管算法千差萬別,但都是由這三種基本邏輯結(jié)構(gòu)構(gòu)成的

 、陧樞蚪Y(jié)構(gòu)

  順序結(jié)構(gòu)是由若干個依次執(zhí)行的步驟組成的這是任何一個算法都離不開的基本結(jié)構(gòu),用程序框圖表示為:

  [問題思考]

 。1)一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結(jié)束嗎?

  提示:由程序框圖的概念可知一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結(jié)束、

 。2)順序結(jié)構(gòu)是任何算法都離不開的基本結(jié)構(gòu)嗎?

  提示:根據(jù)算法基本邏輯結(jié)構(gòu)可知順序結(jié)構(gòu)是任何算法都離不開的`基本結(jié)構(gòu)、

  [課前反思]

  通過以上預(yù)習,必須掌握的幾個知識點:

 。1)程序框圖的概念:

 。2)常見的程序框、流程線及各自表示的功能:

  (3)算法的三種基本邏輯結(jié)構(gòu):

 。4)順序結(jié)構(gòu)的概念及其程序框圖的表示:

  問題背景:計算1×2+3×4+5×6+…+99×100。

  [思考1]能否設(shè)計一個算法,計算這個式子的值。

  提示:能。

  [思考2]能否采用更簡潔的方式表述上述算法過程。

  提示:能,利用程序框圖。

  [思考3]畫程序框圖時應(yīng)遵循怎樣的規(guī)則?

  名師指津:

  (1)使用標準的框圖符號。

  (2)框圖一般按從上到下、從左到右的方向畫。

  (3)除判斷框外,其他程序框圖的符號只有一個進入點和一個退出點,判斷框是一個具有超過一個退出點的程序框。

  (4)在圖形符號內(nèi)描述的語言要非常簡練清楚。

  (5)流程線不要忘記畫箭頭,因為它是反映流程執(zhí)行先后次序的,如果不畫出箭頭就難以判斷各框的執(zhí)行順序。

【高中數(shù)學教案】相關(guān)文章:

高中數(shù)學教案04-11

高中數(shù)學教案15篇07-21

高中數(shù)學教案(15篇)08-18

高中數(shù)學教案(集錦15篇)12-28

高中數(shù)學教案(集合15篇)12-30

高中數(shù)學教案匯編15篇01-07

高中數(shù)學教案(通用15篇)01-22

高中數(shù)學教案(合集15篇)01-29

有趣的數(shù)學教案11-08