- 古典概型教案 推薦度:
- 相關(guān)推薦
古典概型教案4篇
作為一位無私奉獻(xiàn)的人民教師,常常需要準(zhǔn)備教案,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么應(yīng)當(dāng)如何寫教案呢?以下是小編收集整理的古典概型教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
古典概型教案1
一,教材的地位和作用
本節(jié)課是中數(shù)學(xué)3(必修)第三章概率的第二節(jié)古典概型的第一課時(shí),是在學(xué)習(xí)隨機(jī)事件的概率之后,幾何概型之前,文科生不學(xué)習(xí)排列組合的情況下教學(xué)的 。古典概型是一種特殊的數(shù)學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當(dāng)重要的地位。
學(xué)好古典概型可以為其它概率的學(xué)習(xí)奠定基礎(chǔ),同時(shí)有利于理解概率的概念,有利于計(jì)算一些事件的概率,有利于解釋生活中的一些問題。
二,教學(xué)目標(biāo)
1、知識(shí)目標(biāo)
(1)理解古典概型及其概率計(jì)算公式,
(2)會(huì)用列舉法計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率。
2、能力目標(biāo)
根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,通過抽牌游戲讓學(xué)生理解古典概型的定義,引領(lǐng)學(xué)生探究古典概型的概率計(jì)算公式,歸納出求基本事件數(shù)的方法-列舉法。
3 、情感目標(biāo)
樹立從具體到抽象、從特殊到一般的辯證唯物主義觀點(diǎn),培養(yǎng)學(xué)生用隨機(jī)的.觀點(diǎn)來理性的理解世界, 使得學(xué)生在體會(huì)概率意義的同時(shí),感受與他人合作的重要性以及初步形成實(shí)事求是地科學(xué)態(tài)度和鍥而不舍的求學(xué)精神。鼓勵(lì)學(xué)生通過觀察類比提高發(fā)現(xiàn)問題、分析問題、解決問題的能力,增強(qiáng)學(xué)生數(shù)學(xué)思維情趣,形成學(xué)習(xí)數(shù)學(xué)知識(shí)的積極態(tài)度。
三,教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):理解古典概型的概念及利用古典概型求解隨機(jī)事件的概率。
難點(diǎn):如何判斷一個(gè)試驗(yàn)的概率模型是否為古典概型,弄清在一個(gè)古典概型中某隨機(jī)事件包含的基本事件的個(gè)數(shù)和試驗(yàn)中基本事件的總數(shù)。
四,教具
計(jì)算機(jī)多媒體,黑板,粉筆,教棒
五,教學(xué)方法
探究式與講授式相結(jié)合
六,教學(xué)過程
前面我們學(xué)習(xí)了隨機(jī)事件及其概率,今天我們將學(xué)習(xí)古典概型,古典概型是最簡(jiǎn)單,而且最早被人們所認(rèn)識(shí)的一種概率模型,大約在1812年著名數(shù)學(xué)家拉普拉斯就已經(jīng)注意并研究了古典概型概率的計(jì)算。下面先看一個(gè)抽牌游戲。
抽牌游戲:
有紅桃1,2,3和黑桃4,5這5張撲克牌,將其牌點(diǎn)向下置于桌上,現(xiàn)從中任意抽取一張,那么抽到的牌為紅桃的概率有多大?
古典概型教案2
一、教學(xué)目標(biāo):
1、知識(shí)與技能:(1)正確理解古典概型的兩大特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等;
(2)掌握古典概型的概率計(jì)算公式:P(A)=
。3)掌握列舉法、列表法、樹狀圖方法解題
2、過程與方法:(1)通過對(duì)現(xiàn)實(shí)生活中具體的概率問題的探究,感知應(yīng)用數(shù)學(xué)解決問題的方法,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系,培養(yǎng)邏輯推理能力;(2)通過模擬試驗(yàn),感知應(yīng)用數(shù)字解決問題的方法,自覺養(yǎng)成動(dòng)手、動(dòng)腦的良好習(xí)慣.
3、情感態(tài)度與價(jià)值觀:通過數(shù)學(xué)與探究活動(dòng),體會(huì)理論來源于實(shí)踐并應(yīng)用于實(shí)踐的辯證唯物主義觀點(diǎn).
二、重點(diǎn)與難點(diǎn):
1、正確理解掌握古典概型及其概率公式;2、正確理解隨機(jī)數(shù)的概念,并能應(yīng)用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù).
教學(xué)設(shè)想:
1、創(chuàng)設(shè)情境:(1)擲一枚質(zhì)地均勻的硬幣,結(jié)果只有2個(gè),即“正面朝上”或“反面朝上”,它們都是隨機(jī)事件
(2)一個(gè)盒子中有10個(gè)完全相同的球,分別標(biāo)以號(hào)碼1,2,3,…,10,從中任取一球,只有10種不同的結(jié)果,即標(biāo)號(hào)為1,2,3…,10.
師生共同探討:根據(jù)上述情況,你能發(fā)現(xiàn)它們有什么共同特點(diǎn)?
2、基本概念:
(1)基本事件、古典概率模型、隨機(jī)數(shù)、偽隨機(jī)數(shù)的概念見課本P121~126;
(2)古典概型的概率計(jì)算公式:P(A)=
議一議】下列試驗(yàn)是古典概型的是?
①.在適宜條件下,種下一粒種子,觀察它是否發(fā)芽.
、.某人射擊5次,分別命中8環(huán),8環(huán),5環(huán),10環(huán),0環(huán).
③.從甲地到乙地共n條路線,選中最短路線的概率.
、.將一粒豆子隨機(jī)撒在一張桌子的桌面上,觀察豆子落下的位置.
古典概型的判斷
1).審題,確定試驗(yàn)的基本事件.
(2).確認(rèn)基本事件是否有限個(gè)且等可能
什么是基本事件
在一個(gè)試驗(yàn)可能發(fā)生的所有結(jié)果中,那些不能再分的最簡(jiǎn)單的隨機(jī)事件稱為基本事件。(其他事件都可由基本事件的和來描述)
下面我們就常見的:
拋擲問題,抽樣問題,射擊問題.
探討計(jì)數(shù)的一些方法與技巧.
拋擲兩顆骰子的試驗(yàn):
用( x,y )表示結(jié)果,
其中x表示第一顆骰子出現(xiàn)的點(diǎn)數(shù)?
y表示第二顆骰子出現(xiàn)的點(diǎn)數(shù).
(1)寫出試驗(yàn)一共有幾個(gè)基本事件;
(2)“出現(xiàn)點(diǎn)數(shù)之和大于8”包含幾個(gè)基本事件?
規(guī)律總結(jié)]:要寫出所有的基本事件,常采用的方法有:列舉法、列表法、樹形圖法等,但不論采用哪種方法,都要按一定的順序進(jìn)行、正確分類,做到不重、不漏.
方法一:列舉法(枚舉法)
[解析】用(x,y)表示結(jié)果,其中x表示第1枚骰子出現(xiàn)的點(diǎn)數(shù),y表示第2枚骰子出現(xiàn)的點(diǎn)數(shù),則試驗(yàn)的`所有結(jié)果為:
【結(jié)論】:(1)試驗(yàn)一共有36個(gè)基本事件;
。2)“出現(xiàn)點(diǎn)數(shù)之和大于8”包含10個(gè)基本事件.
方法二列表法
坐標(biāo)平面內(nèi)的數(shù)表示相應(yīng)兩次拋擲后出現(xiàn)的點(diǎn)數(shù)的和,基本事件與所描點(diǎn)一一對(duì)應(yīng).
方法三:樹形圖法
三種方法(模型)總結(jié)
1.列舉法
列舉法也稱枚舉法.對(duì)于一些情境比較簡(jiǎn)單,基本事件個(gè)數(shù)不是很多的概率問題,計(jì)算時(shí)只需一一列舉即可得出隨機(jī)事件所含的基本事件數(shù).但列舉時(shí)必須按一定順序,做到不重不漏.
2.列表法
對(duì)于試驗(yàn)結(jié)果不是太多的情況,可以采用列表法.通常把對(duì)問題的思考分析歸結(jié)為“有序?qū)崝?shù)對(duì)”,以便更直接地找出基本事件個(gè)數(shù).列表法的優(yōu)點(diǎn)是準(zhǔn)確、全面、不易遺漏
3.樹形圖法
樹形圖法是進(jìn)行列舉的一種常用方法,適合較復(fù)雜問題中基本事件數(shù)的探究.
抽樣問題
【例】?一只口袋內(nèi)裝有大小相同的5個(gè)球,其中3個(gè)白球,2個(gè)黑球,從中一次摸出兩個(gè)球.
(1)共有多少個(gè)基本事件?
(2)兩個(gè)都是白球包含幾個(gè)基本事件?
[解析]:(1)采用列舉法:分別記白球?yàn)?,2,3號(hào),黑球?yàn)?,5號(hào),有以下10個(gè)基本事件.
。1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)
(2)“兩個(gè)都是白球”包括(1,2),(1,3),(2,3)三種.
【例】某人打靶,射擊5槍,命中3槍.排列這5槍是否命中順序,問:
。1)共有多少個(gè)基本事件?.
。2)3槍連中包含幾個(gè)基本事件?.
。3)恰好2槍連中包含幾個(gè)基本事件?
[例3】一個(gè)口袋內(nèi)裝有大小相等,編有不同號(hào)碼的4個(gè)白球和2個(gè)紅球,從中摸出3個(gè)球.
問:(1)其中有1個(gè)紅色球的概率是.
。2)其中至少有1個(gè)紅球的概率是.
課堂總結(jié):
1.關(guān)于基本事件個(gè)數(shù)的確定:可借助列舉法、列表法、樹狀圖法(模型),注意有規(guī)律性地分類列舉.
2.求事件概率的基本步驟.
(1)審題,確定試驗(yàn)的基本事件
(2)確認(rèn)基本事件是否等可能,且是否有限個(gè);若是,則為古典概型,并求出基本事件的總個(gè)數(shù).
。3)求P(A)
【注意】當(dāng)所求事件較復(fù)雜時(shí),可看成易求的幾個(gè)互斥事件的和,先求各拆分的互斥事件的概率,再用概率加法公式求解
練習(xí)
1、學(xué)習(xí)指導(dǎo)例1(1)、活學(xué)活用;(第76頁)
2、隨堂即時(shí)演練第5題(第78頁)
古典概型教案3
一、教學(xué)目標(biāo):
1、知識(shí)與技能:
(1)正確理解古典概型的兩大特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等;
(2)掌握古典概型的概率計(jì)算公式:P(A)=
2、過程與方法:
(1)通過對(duì)現(xiàn)實(shí)生活中具體的概率問題的探究,感知應(yīng)用數(shù)學(xué)解決問題的方法,體會(huì)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)世界的聯(lián)系,培養(yǎng)邏輯推理能力;(2)通過模擬試驗(yàn),感知應(yīng)用數(shù)字解決問題的方法,自覺養(yǎng)成動(dòng)手、動(dòng)腦的良好習(xí)慣。
3、情感態(tài)度與價(jià)值觀:
通過數(shù)學(xué)與探究活動(dòng),體會(huì)理論來源于實(shí)踐并應(yīng)用于實(shí)踐的辯證唯物主義觀點(diǎn).
二、重點(diǎn)與難點(diǎn):
重點(diǎn)是掌握古典概型的概念及利用古典概型求解隨機(jī)事件的概率;
難點(diǎn)是如何判斷一個(gè)試驗(yàn)是否是古典概型,分清一個(gè)古典概型中某隨機(jī)事件包含的基本事件的個(gè)數(shù)和實(shí)驗(yàn)中基本事件的總數(shù)。
三、教法與學(xué)法指導(dǎo):
根據(jù)本節(jié)課的特點(diǎn),可以采用問題探究式學(xué)案導(dǎo)學(xué)教學(xué)法,通過問題導(dǎo)入、問題探究、問題解決和問題評(píng)價(jià)等教學(xué)過程,與學(xué)生共同探討、合作討論;應(yīng)用所學(xué)數(shù)學(xué)知識(shí)解決現(xiàn)實(shí)問題。
四、教學(xué)過程:
1、創(chuàng)設(shè)情境:(1)擲一枚質(zhì)地均勻的硬幣的實(shí)驗(yàn);
(2)擲一枚質(zhì)地均勻的骰子的試驗(yàn)。
師生共同探討:根據(jù)上述情況,你能發(fā)現(xiàn)它們有什么共同特點(diǎn)?
學(xué)生分組討論試驗(yàn),每人寫出試驗(yàn)結(jié)果。根據(jù)結(jié)果探究這種試驗(yàn)所求概率的特點(diǎn),嘗試歸納古典概型的定義。
在試驗(yàn)(1)中結(jié)果只有2個(gè),即正面朝上或反面朝上,它們都是隨機(jī)事件。
在試驗(yàn)(2)中,所有可能的實(shí)驗(yàn)結(jié)果只有6個(gè),即出現(xiàn)1點(diǎn)2點(diǎn)3點(diǎn)4點(diǎn)5點(diǎn)和6點(diǎn),它們也都是隨機(jī)事件。
2、基本概念:
(看書130頁至132頁)
(1)基本事件、古典概率模型。
(2)古典概型的概率計(jì)算公式:P(A)= .
3、例題分析:
(呈現(xiàn)例題,深刻體會(huì)古典概型的兩個(gè)特征
根據(jù)每個(gè)例題的不同條件,讓每個(gè)學(xué)生找出并回答每個(gè)試驗(yàn)中的基本事件數(shù)和基本事件總數(shù),分析是否滿足古典概型的特征,然后利用古典概型的`計(jì)算方法求得概率。)
例1 從字母a,b,c,d中任意取出兩個(gè)不同的試驗(yàn)中,有哪些基本事件?
分析:為了得到基本事件,我們可以按照某種順序,把所有可能的結(jié)果都列出來。
解:所有的基本事件共有6個(gè):A={a,b},B={a,c},C={a,d},D={b,c}, E={b,d},F={c,d}.
練1:連續(xù)擲3枚硬幣,觀察落地后這3枚硬幣出現(xiàn)正面還是反面。
(1)寫出這個(gè)試驗(yàn)的基本事件;
(2)求出基本事件的總數(shù);
解:
基本事件有(正,正,正)(正,正,反)(正,反,正)(正,反,反)(反,正,正)
(反,正,反)(反,反,正)(反,反,反)
基本事件總數(shù)是8。
上述試驗(yàn)和例1的共同特點(diǎn)是:
(1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);
(2)每個(gè)基本事件出現(xiàn)的可能性相等。
我們將具有這兩個(gè)基本特點(diǎn)的概率模型稱為古典概率模型,簡(jiǎn)稱古典概型。
古典概型具有兩大特征:有限性、等可能性。
只具有有限性的不是古典概型,只具有等可能性的也不是古典概型。
基本事件的概率:
一般地,對(duì)于古典概型,如果試驗(yàn)的n個(gè)基本事件為A1,A2An,由于基本事件是兩兩互斥的,則由互斥事件的概率加法公式得
P(A1)+P(A2)++P(An)=P(A1A2 An)=P(必然事件)=1
又因?yàn)槊總(gè)基本事件發(fā)生的可能性相等,即P(A1)= P(A2)==P(An), 代入上式得
P(Ai)=1/n (i=1n)
所以,在基本事件總數(shù)為n的古典概型中,每個(gè)基本事件發(fā)生的概率為1/n。
若隨機(jī)事件A包含的基本事件數(shù)為m,則p(A)=m/n
對(duì)于古典概型,任何事件A的概率為:
(把課本例題改成練習(xí),讓學(xué)生自己解決,比老師一味的講,要好得多)
練習(xí)2:單選題是標(biāo)準(zhǔn)化考試中常用的題型,一般是從A,B,C,D四個(gè)選項(xiàng)中選擇一個(gè)正確答案。如果考生掌握了考查的內(nèi)容,他可以選擇惟一正確的答案。假設(shè)考生不會(huì)做,他隨機(jī)地選擇一個(gè)答案,問他答對(duì)的概率是多少?
答案:0.25
例2:同時(shí)擲黑白兩個(gè)骰子,計(jì)算:
(1)一共有多少種不同的結(jié)果?
(2)其中向上的點(diǎn)數(shù)之和是5的結(jié)果有多少種?
(3)向上的點(diǎn)數(shù)之和是5的概率是多少?
(通過具體事例,讓學(xué)生自己找出答案,分析是否滿足古典概型的兩個(gè)特征,揭示古典概型的適用范圍和具體說法。)
解:(1)擲一個(gè)骰子的結(jié)果有6種。我們把兩個(gè)骰子標(biāo)上記號(hào)1,2以便區(qū)分,由于1號(hào)骰子的每一個(gè)結(jié)果都可與2號(hào)骰子的任意一個(gè)結(jié)果配對(duì),組成同時(shí)擲兩個(gè)骰子的一個(gè)結(jié)果,因此同時(shí)擲兩個(gè)骰子的結(jié)果共有36種。
(2)在上面的所有結(jié)果中,向上的點(diǎn)數(shù)之和為5的結(jié)果有(1,4),(2,3),(3,2),(4,1)
其中第一個(gè)數(shù)表示1號(hào)骰子的結(jié)果,第二個(gè)數(shù)表示2號(hào)骰子的結(jié)果。
(3)由于所有36種結(jié)果是等可能的,其中向上點(diǎn)數(shù)之和為5的結(jié)果(記憶事件為A)有4種,因此,由于古典概型的概率計(jì)算公式可得P(A)= =
例3假設(shè)儲(chǔ)蓄卡的密碼由4個(gè)數(shù)字組成,每個(gè)數(shù)字可以是0,1,2,9十個(gè)數(shù)字中的任意一個(gè).假設(shè)一個(gè)人完全忘記了自己的儲(chǔ)蓄卡密碼,問他到自動(dòng)取款機(jī)上隨機(jī)試一次密碼就能取到錢的概率是多少?
答案:P(試一次密碼就能取到錢)=
(人們?yōu)榱朔奖阌洃?通常用自己的生日作為儲(chǔ)蓄卡的密碼。當(dāng)錢包里既有身份證又有儲(chǔ)蓄卡時(shí),密碼泄露的概率很大,因此用身份證上的號(hào)作為密碼是不安全的,從自己身邊的現(xiàn)實(shí)生活中培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)解決實(shí)際問題的能力)
例5某種飲料每箱裝6聽,如果其中有2聽不合格,問質(zhì)檢人員從中隨機(jī)抽取2聽,檢測(cè)出不合格產(chǎn)品的概率有多大?
答案:P(A)= + + =0.6
(請(qǐng)學(xué)生自己先閱讀例題,理解題意,教師適時(shí)點(diǎn)撥、指導(dǎo)。待學(xué)生充分思考、醞釀,具有初步的思路之后,請(qǐng)學(xué)生說出他們的解法。)
4、當(dāng)堂檢測(cè):
(1).在40根纖維中,有12根的長(zhǎng)度超過30mm,從中任取一根,取到長(zhǎng)度超過30mm的纖維的概率是()
A.B.C.D.以上都不對(duì)
(2).盒中有10個(gè)鐵釘,其中8個(gè)是合格的,2個(gè)是不合格的,從中任取一個(gè)恰為合格鐵釘?shù)母怕适?/p>
A.B.C.D.
(3).在大小相同的5個(gè)球中,2個(gè)是紅球,3個(gè)是白球,若從中任取2個(gè),則所取的2個(gè)球中至少有一個(gè)紅球的概率是。
(4).拋擲2顆質(zhì)地均勻的骰子,求點(diǎn)數(shù)和為8的概率。
5、評(píng)價(jià)標(biāo)準(zhǔn):
(1).B[提示:在40根纖維中,有12根的長(zhǎng)度超過30mm,即基本事件總數(shù)為40,且它們是等可能發(fā)生的,所求事件包含12個(gè)基本事件,故所求事件的概率為 ,因此選B.]
(2).C[提示:(方法1)從盒中任取一個(gè)鐵釘包含基本事件總數(shù)為10,其中抽到合格鐵訂(記為事件A)包含8個(gè)基本事件,所以,所求概率為P(A)= = .(方法2)本題還可以用對(duì)立事件的概率公式求解,因?yàn)閺暮兄腥稳∫粋(gè)鐵釘,取到合格品(記為事件A)與取到不合格品(記為事件B)恰為對(duì)立事件,因此,P(A)=1-P(B)=1- = .]
(3). [提示;記大小相同的5個(gè)球分別為紅1,紅2,白1,白2,白3,則基本事件為:(紅1,紅2),(紅1,白1),(紅1,白2)(紅1,白3),(紅2,白3),共10個(gè),其中至少有一個(gè)紅球的事件包括7個(gè)基本事件,所以,所求事件的概率為 .本題還可以利用對(duì)立事件的概率和為1來求解,對(duì)于求至多至少等事件的概率頭問題,常采用間接法,即求其對(duì)立事件的概率P(A),然后利用P(A)1-P(A)求解]。
4.解:在拋擲2顆骰子的試驗(yàn)中,每顆骰子均可出現(xiàn)1點(diǎn),2點(diǎn),,6點(diǎn)6種不同的結(jié)果,我們把兩顆骰子標(biāo)上記號(hào)1,2以便區(qū)分,由于1號(hào)骰子的一個(gè)結(jié)果,因此同時(shí)擲兩顆骰子的結(jié)果共有66=36種,在上面的所有結(jié)果中,向上的點(diǎn)數(shù)之和為8的結(jié)果有(2,6),(3,5),(4,4),(5,3),(6,2)5種,所以,所求事件的概率為 .
五、課堂小結(jié):
本節(jié)主要研究了古典概型的概率求法,解題時(shí)要注意兩點(diǎn):
(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。
(2)古典概型的解題步驟;
、偾蟪隹偟幕臼录䲠(shù);
②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=
古典概型教案4
本文題目:高三數(shù)學(xué)復(fù)習(xí)教案:古典概型復(fù)習(xí)教案
【高考要求】古典概型(B); 互斥事件及其發(fā)生的概率(A)
【學(xué)習(xí)目標(biāo)】:1、了解概率的頻率定義,知道隨機(jī)事件的發(fā)生是隨機(jī)性與規(guī)律性的統(tǒng)一;
2、 理解古典概型的特點(diǎn),會(huì)解較簡(jiǎn)單的古典概型問題;
3、 了解互斥事件與對(duì)立事件的概率公式,并能運(yùn)用于簡(jiǎn)單的概率計(jì)算.
【知識(shí)復(fù)習(xí)與自學(xué)質(zhì)疑】
1、古典概型是一種理想化的概率模型,假設(shè)試驗(yàn)的結(jié)果數(shù)具有 性和 性.解古典概型問題關(guān)鍵是判斷和計(jì)數(shù),要掌握簡(jiǎn)單的記數(shù)方法(主要是列舉法).借助于互斥、對(duì)立關(guān)系將事件分解或轉(zhuǎn)化是很重要的方法.
2、(A)在10件同類產(chǎn)品中,其中8件為正品,2件為次品。從中任意抽出3件,則下列4個(gè)事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是 .
3、(A)從5個(gè)紅球,1個(gè)黃球中隨機(jī)取出2個(gè),所取出的兩個(gè)球顏色不同的概率是 。
4、(A)同時(shí)拋兩個(gè)各面上分別標(biāo)有1、2、3、4、5、6均勻的正方體玩具一次,向上的兩個(gè)數(shù)字之和為3的概率是 .
5、(A)某人射擊5槍,命中3槍,三槍中恰好有2槍連中的概率是 .
6、(B)若實(shí)數(shù) ,則曲線 表示焦點(diǎn)在y軸上的雙曲線的概率是 .
【例題精講】
1、(A)甲、乙兩人參加知識(shí)競(jìng)答,共有10道不同的題目,其中選擇題6道,判斷題4道,甲、乙兩人依次各抽一題.(1)甲抽到選擇題、乙抽到判斷題的概率是多少?
(2)甲、乙兩人中至少有一人抽到選擇題的概率是多少?
2、(B)黃種人群中各種血型的人所占的比例如下表所示:
血型 A B AB O
該血型的人所占的`比(%) 28 29 8 35
已知同種血型的人可以輸血,O型血可以輸給任一種血型的人,任何人的血都可以輸給AB型血的人,其他不同血型的人不能互相輸血.小明是B型血,若小明因病需要輸血,問:
(1) 任找一個(gè)人,其血可以輸給小明的概率是多少?
(2) 任找一個(gè)人,其血不能輸給小明的概率是多少?
3、(B)將兩粒骰子投擲兩次,求:(1)向上的點(diǎn)數(shù)之和是8的概率;(2)向上的點(diǎn)數(shù)之和不小于8 的概率;(3)向上的點(diǎn)數(shù)之和不超過10的概率.
4、(B)將一個(gè)各面上均涂有顏色的正方體鋸成 (n個(gè)同樣大小的正方體,從這些小正方體中任取一個(gè),求下列事件的概率:(1)三面涂有顏色;(2)恰有兩面涂有顏色;
(3)恰有一面涂有顏色;(4)至少有一面涂有顏色.
【矯正反饋】
1、(A)一個(gè)三位數(shù)的密碼鎖,每位上的數(shù)字都可在0到10這十個(gè)數(shù)字中任選,某人忘記了密碼最后一個(gè)號(hào)碼,開鎖時(shí)在對(duì)好前兩位號(hào)碼后,隨意撥動(dòng)最后一個(gè)數(shù)字恰好能開鎖的概率是 .
2、(A)第1、2、5、7路公共汽車都要停靠的一個(gè)車站,有一位乘客等候著1路或5路汽車,假定各路汽車首先到站的可能性相等,那么首先到站的正好是這位乘客所要乘的的車的概率是 .
3、(A)某射擊運(yùn)動(dòng)員在打靶中,連續(xù)射擊3次,事件至少有兩次中靶的對(duì)立事件是 .
4、(B)某產(chǎn)品分甲、乙、丙三級(jí),其中乙、丙兩級(jí)均屬次品,在正常生產(chǎn)情況下出現(xiàn)乙級(jí)品和丙級(jí)品的概率分別為3%和1%,求抽驗(yàn)一只是正品(甲級(jí))的概率 .
5、(B)袋中裝有4只白球和2只黑球,從中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.
【遷移應(yīng)用】
1、(A)將一粒骰子連續(xù)拋擲三次,它落地時(shí)向上的點(diǎn)數(shù)依次成等差數(shù)列的概率是 .
2、(A)從魚塘中打一網(wǎng)魚,共M條,做上標(biāo)記后放回池塘中,過了幾天,又打上來一網(wǎng)魚,共N條,其中K條有標(biāo)記,估計(jì)池塘中魚的條數(shù)為 .
3、(A)從分別寫有A,B,C,D,E的5張卡片中,任取2張,這兩張上的字母恰好按字母順序相鄰的概率是 .
4、(B)電子鐘一天顯示的時(shí)間是從00:00到23:59的每一時(shí)刻都由四個(gè)數(shù)字組成,則一天中任一時(shí)刻的四個(gè)數(shù)字之和為23的概率是 .
5、(B)將甲、乙兩粒骰子先后各拋一次,a,b分別表示拋擲甲、乙兩粒骰子所出現(xiàn)的點(diǎn)數(shù).
(1)若點(diǎn)P(a,b)落在不等式組 表示的平面區(qū)域記為A,求事件A的概率;
(2)求P(a,b)落在直線x+y=m(m為常數(shù))上,且使此事件的概率最大,求m的值.
【古典概型教案】相關(guān)文章:
古典概型教案02-23
毛概社會(huì)實(shí)踐心得08-01
古典沙發(fā)怎么搭配02-19
古典園林的導(dǎo)游詞02-11
契約型與公司型投資基金的主要區(qū)別08-19
毛概社會(huì)實(shí)踐總結(jié)5篇03-27
保守型的理財(cái)方式10-28
保守型的理財(cái)方法02-16