国产精品入口免费视频_亚洲精品美女久久久久99_波多野结衣国产一区二区三区_农村妇女色又黄一级真人片卡

因式分解教案

時間:2024-08-19 01:48:29 教案 我要投稿

因式分解教案模板錦集六篇

  在教學工作者開展教學活動前,就有可能用到教案,教案是教學活動的依據,有著重要的地位。如何把教案做到重點突出呢?下面是小編精心整理的因式分解教案6篇,歡迎閱讀與收藏。

因式分解教案模板錦集六篇

因式分解教案 篇1

  15.1.1 整式

  教學目標

  1.單項式、單項式的定義.

  2.多項式、多項式的次數(shù).

  3、理解整式概念.

  教學重點

  單項式及多項式的有關概念.

  教學難點

  單項式及多項式的有關概念.

  教學過程

 、瘢岢鰡栴},創(chuàng)設情境

  在七年級,我們已經學習了用字母可以表示數(shù),思考下列問題

  1.要表示△ABC的周長需要什么條件?要表示它的面積呢?

  2.小王用七小時行駛了Skm的路程,請問他的平均速度是多少?

  結論:

  1、要表示△ABC的周長,需要知道它的各邊邊長.要表示△ABC的面積需要知道一條邊長和這條邊上的高.如果設BC=a,AC=b,AB=c.AB邊上的高為h,那么△ABC的周長可以表示為a+b+c;△ABC的面積可以表示為 ?c?h.

  2.小王的平均速度是 .

  問題:這些式子有什么特征呢?

  (1)有數(shù)字、有表示數(shù)字的字母.

  (2)數(shù)字與字母、字母與字母之間還有運算符號連接.

  歸納:用基本的運算符號(運算包括加、減、乘、除、乘方與開方)把數(shù)和表示數(shù)的字母連接起來的式子叫做代數(shù)式.

  判斷上面得到的三個式子:a+b+c、 ch、 是不是代數(shù)式?(是)

  代數(shù)式可以簡明地表示數(shù)量和數(shù)量的關系.今天我們就來學習和代數(shù)式有關的整式.

 、颍鞔_和鞏固整式有關概念

 。ǔ鍪就队埃

  結論:(1)正方形的周長:4x.

 。2)汽車走過的路程:vt.

  (3)正方體有六個面,每個面都是正方形,這六個正方形全等,所以它的表面積為6a2;正方體的體積為長×寬×高,即a3.

 。4)n的相反數(shù)是-n.

  分析這四個數(shù)的特征.

  它們符合代數(shù)式的定義.這五個式子都是數(shù)與字母或字母與字母的積,而a+b+c、 ch、 中還有和與商的運算符號.還可以發(fā)現(xiàn)這五個代數(shù)式中字母指數(shù)各不相同,字母的個數(shù)也不盡相同.

  請同學們閱讀課本P160~P161單項式有關概念.

  根據這些定義判斷4x、vt、6a2、a3、-n、a+b+c、 ch、 這些代數(shù)式中,哪些是單項式?是單項式的,寫出它的系數(shù)和次數(shù).

  結論:4x、vt、6a2、a3、-n、 ch是單項式.它們的系數(shù)分別是4、1、6、1、-1、 .它們的次數(shù)分別是1、2、2、3、1、2.所以4x、-n都是一次單項式;vt、6a2、 ch都是二次單項式;a3是三次單項式.

  問題:vt中v和t的指數(shù)都是1,它不是一次單項式嗎?

  結論:不是.根據定義,單項式vt中含有兩個字母,所以它的次數(shù)應該是這兩個字母的指數(shù)的和,而不是單個字母的指數(shù),所以vt是二次單項式而不是一次單項式.

  生活中不僅僅有單項式,像a+b+c,它不是單項式,和單項式有什么聯(lián)系呢?

  寫出下列式子(出示投影)

  結論:(1)t-5.(2)3x+5y+2z.

 。3)三角尺的面積應是直角三角形的面積減去圓的面積,即 ab-3.12r2.

 。4)建筑面積等于四個矩形的面積之和.而右邊兩個已知矩形面積分別為3×2、4×3,所以它們的面積和是18.于是得這所住宅的建筑面積是x2+2x+18.

  我們可以觀察下列代數(shù)式:

  a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18.發(fā)現(xiàn)它們都是由單項式的和組成的式子.是多個單項式的和,能不能叫多項式?

  這樣推理合情合理.請看投影,熟悉下列概念.

  根據定義,我們不難得出a+b+c、t-5、3x+5y+2z、 ab-3.12r2、x2+2x+18都是多項式.請分別指出它們的項和次數(shù).

  a+b+c的'項分別是a、b、c.

  t-5的項分別是t、-5,其中-5是常數(shù)項.

  3x+5y+2z的項分別是3x、5y、2z.

  ab-3.12r2的項分別是 ab、-3.12r2.

  x2+2x+18的項分別是x2、2x、18. 找多項式的次數(shù)應抓住兩條,一是找準每個項的次數(shù),二是取每個項次數(shù)的最大值.根據這兩條很容易得到這五個多項式中前三個是一次多項式,后兩個是二次多項式.

  這節(jié)課,通過探究我們得到單項式和多項式的有關概念,它們可以反映變化的世界.同時,我們也到符號的魅力所在.我們把單項式與多項式統(tǒng)稱為整式.

 、螅S堂練習

  1.課本P162練習

 、簦n時小結

  通過探究,我們了解了整式的概念.理解并掌握單項式、多項式的有關概念是本節(jié)的重點,特別是它們的次數(shù).在現(xiàn)實情景中進一步理解了用字母表示數(shù)的意義,發(fā)展符號感.

 、酰n后作業(yè)

  1.課本P165~P166習題15.1─1、5、8、9題.

  2.預習“整式的加減”.

  課后作業(yè):《課堂感悟與探究》

  15.1.2 整式的加減(1)

  教學目的:

  1、解字母表示數(shù)量關系的過程,發(fā)展符號感。

  2、會進行整式加減的運算,并能說明其中的算理,發(fā)展有條理的思考及語言表達能力。

  教學重點:

  會進行整式加減的運算,并能說明其中的算理。

  教學難點:

  正確地去括號、合并同類項,及符號的正確處理。

  教學過程:

  一、課前練習:

  1、填空:整式包括 和

  2、單項式 的系數(shù)是 、次數(shù)是

  3、多項式 是 次 項式,其中二次項

  系數(shù)是 一次項是 ,常數(shù)項是

  4、下列各式,是同類項的一組是( )

 。ˋ) 與 (B) 與 (C) 與

  5、去括號后合并同類項:

  二、探索練習:

  1、如果用a 、b分別表示一個兩位數(shù)的十位數(shù)字和個位數(shù)字,那么這個兩位數(shù)可以表示為 交換這個兩位數(shù)的十位數(shù)字和個位數(shù)字后得到的兩位數(shù)為

  這兩個兩位數(shù)的和為

  2、如果用a 、b、c分別表示一個三位數(shù)的百位數(shù)字、十位數(shù)字和個位數(shù)字,那么這個三位數(shù)可以表示為 交換這個三位數(shù)的百位數(shù)字和個位數(shù)字后得到的三位數(shù)為

  這兩個三位數(shù)的差為

  ●議一議:在上面的兩個問題中,分別涉及到了整式的什么運算?

  說說你是如何運算的?

  ▲整式的加減運算實質就是

  運算的結果是一個多項式或單項式。

  三、鞏固練習:

  1、填空:(1) 與 的差是

 。2)、單項式 、 、 、 的和為

 。3)如圖所示,下面為由棋子所組成的三角形,

  一個三角形需六個棋子,三個三角形需

 。 )個棋子,n個三角形需 個棋子

  2、計算:

 。1)

  (2)

 。3)

  3、(1)求 與 的和

  (2)求 與 的差

  4、先化簡,再求值: 其中

  四、提高練習:

  1、若A是五次多項式,B是三次多項式,則A+B一定是

 。ˋ)五次整式 (B)八次多項式

  (C)三次多項式 (D)次數(shù)不能確定

  2、足球比賽中,如果勝一場記3a分,平一場記a分,負一場

  記0分,那么某隊在比賽勝5場,平3場,負2場,共積多

  少分?

  3、一個兩位數(shù)與把它的數(shù)字對調所成的數(shù)的和,一定能被14

  整除,請證明這個結論。

  4、如果關于字母x的二次多項式 的值與x的取值無關,

  試求m、n的值。

  五、小結:整式的加減運算實質就是去括號和合并同類項。

  六、作業(yè):第8頁習題1、2、3

  15.1.2整式的加減(2)

  教學目標:1.會進行整式加減的運算,并能說明其中的算理,發(fā)展有條理的思考及其語言表達能力。

  2.通過探索規(guī)律的問題,進一步符號表示的意義,發(fā)展符號感,發(fā)展推理能力。

  教學重點整式加減的運算。

  教學難點:探索規(guī)律的猜想。

  教學方法:嘗試練習法,討論法,歸納法。

  教學用具:投影儀

  教學過程:

  I探索練習:

  擺第1個“小屋子”需要5枚棋子,擺第2個需要 枚棋子,擺第3個需要 枚棋子。按照這樣的方式繼續(xù)擺下去。

 。1)擺第10個這樣的“小屋子”需要 枚棋子

  (2)擺第n個這樣的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解決這個問題嗎?小組討論。

  二、例題講解:

  三、鞏固練習:

  1、計算:

  (1)(14x3-2x2)+2(x3-x2) (2)(3a2+2a-6)-3(a2-1)

 。3)x-(1-2x+x2)+(-1-x2) (4)(8xy-3x2)-5xy-2(3xy-2x2)

  2、已知:A=x3-x2-1,B=x2-2,計算:(1)B-A (2)A-3B

  3、列方程解應用題:三角形三個內角的和等于180°,如果三角形中第一個角等于第二個角的3倍,而第三個角比第二個角大15°,那么

  (1)第一個角是多少度?

  (2)其他兩個角各是多少度?

  四、提高練習:

  1、已知A=a2+b2-c2,B=-4a2+2b2+3c2,并且A+B+C=0,問C是什么樣的多項式?

  2、設A=2x2-3xy+y2-x+2y,B=4x2-6xy+2y2-3x-y,若│x-2a│+

  (y+3)2=0,且B-2A=a,求A的值。

  3、已知有理數(shù)a、b、c在數(shù)軸上(0為數(shù)軸原點)的對應點如圖:

  試化簡:│a│-│a+b│+│c-a│+│b+c│

  小 結:要善于在圖形變化中發(fā)現(xiàn)規(guī)律,能熟練的對整式加減進行運算。

  作 業(yè):課本P14習題1.3:1(2)、(3)、(6),2。

因式分解教案 篇2

  教學目標

  1、進一步鞏固因式分解的概念;

  2、鞏固因式分解常用的三種方法

  3、選擇恰當?shù)姆椒ㄟM行因式分解

  4、應用因式分解來解決一些實際問題

  5、體驗應用知識解決問題的樂趣

  教學重點

  靈活運用因式分解解決問題

  教學難點:

  靈活運用恰當?shù)囊蚴椒纸獾姆椒,拓展練?、3

  教學過程

  一、創(chuàng)設情景:若a=101,b=99,求a2-b2的值

  利用因式分解往往能將一些復雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。

  二、知識回顧

  1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.

  判斷下列各式哪些是因式分解?(讓學生先思考,教師提問講解,讓學生明確因式分解的概念以及與乘法的關系)

  (1).x2-4y2=(x+2y)(x-2y)因式分解(2).2x(x-3y)=2x2-6xy整式乘法

  (3).(5a-1)2=25a2-10a+1整式乘法(4).x2+4x+4=(x+2)2因式分解

  (5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解

  (7).2πR+2πr=2π(R+r)因式分解

  2、.規(guī)律總結(教師講解):分解因式與整式乘法是互逆過程.

  分解因式要注意以下幾點:(1).分解的對象必須是多項式.

  (2).分解的結果一定是幾個整式的乘積的形式.(3).要分解到不能分解為止.

  3、因式分解的方法

  提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1)公因式的概念;公因式的求法

  公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)2

  4、強化訓練

  教學引入

  師:教材在《四邊形》這一章《引言》里有這樣一句話:把一個長方形折疊就可以得到一個正方形,F(xiàn)在請同學們拿出一個長方形紙條,按動畫所示進行折疊處理。

  動畫演示:

  場景一:正方形折疊演示

  師:這就是我們得到的正方形。下面請同學們拿出三角板(刻度尺)和圓規(guī),我們來研究正方形的幾何性質—邊、角以及對角線之間的關系。請大家測量各邊的長度、各角的大小、對角線的長度以及對角線交點到各頂點的長度。

  [學生活動:各自測量。]

  鼓勵學生將測量結果與鄰近同學進行比較,找出共同點。

  講授新課

  找一兩個學生表述其結論,表述是要注意糾正其語言的規(guī)范性。

  動畫演示:

  場景二:正方形的性質

  師:這些性質里那些是矩形的性質?

  [學生活動:尋找矩形性質。]

  動畫演示:

  場景三:矩形的性質

  師:同樣在這些性質里尋找屬于菱形的'性質。

  [學生活動;尋找菱形性質。]

  動畫演示:

  場景四:菱形的性質

  師:這說明正方形具有矩形和菱形的全部性質。

  及時提出問題,引導學生進行思考。

  師:根據這些性質,我們能不能給正方形下一個定義?怎么樣給正方形下一個準確的定義?

  [學生活動:積極思考,有同學做躍躍欲試狀。]

  師:請同學們回想矩形與菱形的定義,可以根據矩形與菱形的定義類似的給出正方形的定義。

  學生應能夠向出十種左右的定義方式,其余作相應鼓勵,把以下三種板書:

  “有一組鄰邊相等的矩形叫做正方形!

  “有一個角是直角的菱形叫做正方形。”

  “有一個角是直角且有一組鄰邊相等的平行四邊形叫做正方形!

  [學生活動:討論這三個定義正確不正確?三個定義之間有什么共同和不同的地方?這出教材中采用的是第三種定義方式。]

  師:根據定義,我們把平行四邊形、矩形、菱形和正方形它們之間的關系梳理一下。

  試一試把下列各式因式分解:

  (1).1-x2=(1+x)(1-x)(2).4a2+4a+1=(2a+1)2

  (3).4x2-8x=4x(x-2)(4).2x2y-6xy2=2xy(x-3y)

  三、例題講解

  例1、分解因式

  (1)-x3y3+x2y+xy(2)6(x-2)+2x(2-x)

  (3)(4)y2+y+

  例2、分解因式

  1、a3-ab2=2、(a-b)(x-y)-(b-a)(x+y)=3、(a+b)2+2(a+b)-15=

  4、-1-2a-a2=5、x2-6x+9-y26、x2-4y2+x+2y=

  例3、分解因式

  1、72-2(13x-7)22、8a2b2-2a4b-8b3

  三、知識應用

  1、(4x2-9y2)÷(2x+3y)2、(a2b-ab2)÷(b-a)

  3、解方程:(1)x2=5x(2)(x-2)2=(2x+1)2

  4、.若x=-3,求20x2-60x的值.5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?

  四、拓展應用

  1.計算:7652×17-2352×17解:7652×17-2352×17=17(7652-2352)=17(765+235)(765-235)

  2、20042+20xx被20xx整除嗎?

  3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).

  五、課堂小結:今天你對因式分解又有哪些新的認識?

因式分解教案 篇3

  第6.4因式分解的簡單應用

  背景材料:

  因式分解是初中數(shù)學中的一個重點內容,也是一項重要的基本技能和基礎知識,更是一種數(shù)學的變形方法,在今后的學習中有著重要的作用。因此,除了單純的因式分解問題外,因式分解在解某些數(shù)學問題中有著廣泛的作用,因式分解在三角形中的應用,因式分解可以用來證明代數(shù)問題,用于代數(shù)式的求值,用于求不定方程,用于解應用題解決有關復雜數(shù)值的計算,本節(jié)課的例題因式分解在數(shù)學題中的簡單應用。

  教材分析:

  本節(jié)課是本章的最后一節(jié),是學生學習因式分解初步應用,首先要使學生體會到因式分解在數(shù)學中應用,其次給學生提供更多機會體驗主動學習和探索的“過程”與“經歷”,使多數(shù)學里擁有一定問題解決的經驗。

  教學目標:

  1、在整除的情況下,會應用因式分解,進行多項式相除。

  2、會應用因式分解解簡單的一元二次方程。

  3、體驗數(shù)學問題中的矛盾轉化思想。

  4、培養(yǎng)觀察和動手能力,自主探索與合作交流能力。

  教學重點:

  學會應用因式分解進行多項式除法和解簡單一元二次方程。

  教學難點:

  應用因式分解解簡單的一元二次方程。

  設計理念:

  根據本節(jié)課的內容特點,主要采用師生合作控討式課堂教學方法,以教師為主導,學生為主體,動手實踐訓練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標,引導學生自主探索,動手實踐,合作交流。注重使學生經辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數(shù)學素養(yǎng),能有效地激發(fā)學生的思維積極性,學生在學習過程中調動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。

  教學過程:

  一、創(chuàng)設情境,復習提問

  1、將正式各式因式分解

 。1)(a+b)2-10(a+b)+25 (2)-xy+2x2y+x3y

 。3)2 a2b-8a2b (4)4x2-9

  [四位同學到黑板上演板,本課時用復習“練習引入”也不失為一種好方法,既先復習因式分解的.提取分因式和公式法,又為下面解決多項式除法運算作鋪墊]

  教師訂正

  提出問題:怎樣計算(2 a2b-8a2b)÷(4a-b)

  二、導入新課,探索新知

 。ㄏ茸寣W生思考上面所提出的問題,教師從旁啟發(fā))

  師:如果出現(xiàn)豎式計算,教師可以給予肯定;可能出現(xiàn)(2 a2b-8a2b)÷(4a-b)= ab-8a2追問學生怎么得來的,運算的依據是什么?這樣暴露學生的思維,讓學生自己發(fā)現(xiàn)錯誤之處;觀察2 a2b-8a2b=2 ab(b-4a),其中一個因式正好是除式4a-b的相反數(shù),如果用“換元”思想,我們就可以把問題轉化為單項式除以單項式。

 。2 a2b-8a2b)÷(4a-b)

  =-2ab(4a-b)÷(4a-b)

  =-2ab

 。ㄗ寣W生自己比較哪種方法好)

  利用上面的數(shù)學解題思路,同學們嘗試計算

  (4x2-9)÷(3-2x)

  學生總結解題步驟:1、因式分解;2、約去公因式)

 。ㄈw學生動手動腦,然后叫學生回答,及時表揚,講練結合, [運用多項式的因式分解和換元的思想,可以把兩個多項式相除,轉化為單項式的除法]

  練習計算

  (1)(a2-4)÷(a+2)

 。2)(x2+2xy+y2)÷(x+y)

  (3)[(a-b)2+2(b-a)] ÷(a-b)

  三、合作學習

  1、以四人為一組討論下列問題

  若A?B=0,下面兩個結論對嗎?

 。1)A和B同時都為零,即A=0且B=0

 。2)A和B至少有一個為零即A=0或B=0

  [合作學習,四個小組討論,教師逐步引導,讓學生講自己的想法,及解題步驟,培養(yǎng)語言表達能力,體會運用因式分解的實際運用作用,增加學習興趣]

  2、你能用上面的結論解方程

 。1)(2x+3)(2x-3)=0 (2)2x2+x=0

  解:

  ∵(2x+3)(2x-3)=0

  ∴2x+3=0或2x-3=0

  ∴方程的解為x=-3/2或x=3/2

  解:x(2x+1)=0

  則x=0或2x+1=0

  ∴原方程的解是x1=0,x2=-1/2

  [讓學生先獨立完成,再組織交流,最后教師針對性地講解,讓學生總結步驟:1、移項,使方程一邊變形為零;2、等式左邊因式分解;3、轉化為解一元一次方程]

  3、練習,解下列方程

 。1)x2-2x=0 4x2=(x-1)2

  四、小結

 。1)應用因式分解和換元思想可以把某些多項式除法轉化為單項式除法。

 。2)如果方程的等號一邊是零,另一邊含有未知數(shù)x的多項式可以分解成若干個x的一次式的積,那么就可以應用因式分解把原方程轉化成幾個一元一次方程來解。

  設計理念:

  根據本節(jié)課的內容特點,主要采用師生合作討論式課堂教學方法,以教師為主導,學生為主體,動手實踐訓練為主線,創(chuàng)新思維為核心,態(tài)度情感能力為目標,引導學生自主探索,動手實踐,合作交流。注重使學生經辦觀察、操作、推理等探索過程。這種教學理念,反映了時代精神,有利于提高學生的數(shù)學素養(yǎng),能有效地激發(fā)學生的思維積極性,學生在學習過程中調動各種感官,進行觀察與抽象、操作與思考、自主與交流等,進而改進學生的學習方法。

因式分解教案 篇4

  學習目標

  1、 學會用公式法因式法分解

  2、綜合運用提取公式法、公式法分解因式

  學習重難點 重點:

  完全平方公式分解因式.

  難點:綜合運用兩種公式法因式分解

  自學過程設計

  完全平方公式:

  完全平方公式的逆運用:

  做一做:

  1.(1)16x2-8x+_______=(4x-1)2;

  (2)_______+6x+9=(x+3)2;

  (3)16x2+_______+9y2=(4x+3y)2;

  (4)(a-b)2-2(a-b)+1=(______-1)2.

  2.在代數(shù)式(1)a2+ab+b2;(2)4a2+4a+1;(3)a2-b2+2ab;(4)-4a2+12ab-9b2中,可用完全平方公式因式分解的是_________(填序號)

  3.下列因式分解正確的是( )

  A.x2+y2=(x+y)2 B.x2-xy+x2=(x-y)2

  C.1+4x-4x2=(1-2x)2 D.4-4x+x2=(x-2)2

  4.分解因式:(1)x2-22x+121 (2)-y2-14y-49 (3)(a+b)2+2(a+b)+1

  5.計算:20062-40102006+20052=___________________.

  6.若x+y=1,則 x2+xy+ y2的值是_________________.

  想一想

  你還有哪些地方不是很懂?請寫出來。

  ____________________________________________________________________________________ 預習展示一:

  1.判別下列各式是不是完全平方式.

  2、把下列各式因式分解:

  (1)-x2+4xy-4y2

  (2)3ax2+6axy+3ay2

  (3)(2x+y)2-6(2x+y)+9

  應用探究:

  1、用簡便方法計算

  49.92+9.98 +0.12

  拓展提高:

  (1)( a2+b2)( a2+b2 10)+25=0 求a2+b2

  (2)4x2+y2-4xy-12x+6y+9=0

  求x、y關系

  (3)分解因式:m4+4

  教后反思 考察利用公式法因式分解的'題目不會很難,但是需要學生記住公式的形式,之后利用公式把式子進行變形,從而達到進行因式分解的目的,但是這里有用到實際中去的例子,對學生來說會難一些。

因式分解教案 篇5

  【教學目標】

  1、了解因式分解的概念和意義;

  2、認識因式分解與整式乘法的相互關系——相反變形,并會運用它們之間的相互關系尋求因式分解的方法。

  【教學重點、難點】

  重點是因式分解的概念,難點是理解因式分解與整式乘法的相互關系,并運用它們之間的相互關系尋求因式分解的方法。

  【教學過程】

 、濉⑶榫硨

  看誰算得快:(搶答)

  (1)若a=101,b=99,則a2-b2=___________;

  (2)若a=99,b=-1,則a2-2ab+b2=____________;

  (3)若x=-3,則20x2+60x=____________。

 、妗⑻骄啃轮

  1、請每題答得最快的同學談思路,得出最佳解題方法。(多媒體出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

  (2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

  (3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

  2、觀察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它們的特點。(等式的左邊是一個什么式子,右邊又是什么形式?)

  3、類比小學學過的因數(shù)分解概念,得出因式分解概念。(學生概括,老師補充。)

  板書課題:§6.1 因式分解

  因式分解概念:把一個多項式化成幾個整式的積的形式叫做因式分解,也叫分解因式。

 、、前進一步

  1、讓學生繼續(xù)觀察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它們是什么運算?與因式分解有何關系?它們有何聯(lián)系與區(qū)別?

  2、因式分解與整式乘法的關系:

  因式分解

  結合:a2-b2 (a+b)(a-b)

  整式乘法

  說明:從左到右是因式分解其特點是:由和差形式(多項式)轉化成整式的積的形式;從右到左是整式乘法其特點是:由整式積的形式轉化成和差形式(多項式)。

  結論:因式分解與整式乘法的`相互關系——相反變形。

 、、鞏固新知

  1、 下列代數(shù)式變形中,哪些是因式分解?哪些不是?為什么?

  (1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

  (3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

  (6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

  2、你能寫出整式相乘(其中至少一個是多項式)的兩個例子,并由此得到相應的兩個多項式的因式分解嗎?把結果與你的同伴交流。

 、、應用解釋

  例 檢驗下列因式分解是否正確:

  (1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

  分析:檢驗因式分解是否正確,只要看等式右邊幾個整式相乘的積與右邊的多項式是否相等。

  練習 計算下列各題,并說明你的算法:(請學生板演)

  (1)872+87×13

  (2)1012-992

 、辍⑺季S拓展

  1.若 x2+mx-n能分解成(x-2)(x-5),則m= ,n=

  2.機動題:(填空)x2-8x+m=(x-4)( ),且m=

 、、課堂回顧

  今天這節(jié)課,你學到了哪些知識?有哪些收獲與感受?說出來大家分享。

 、、布置作業(yè)

  作業(yè)本(1) ,一課一練

 。ň牛┙虒W反思:

因式分解教案 篇6

  課型 復習課 教法 講練結合

  教學目標(知識、能力、教育)

  1.了解分解因式的意義,會用提公因式法、 平方差公式和完全平方公式(直接用公式不超過兩次)分解因式(指數(shù)是正整數(shù)).

  2.通過乘法公式 , 的逆向變形,進一步發(fā)展學生觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達能力

  教學重點 掌握用提取公因式法、公式法分解因式

  教學難點 根據題目的形式和特征 恰當選擇方法進行分解,以提高綜合解題能力。

  教學媒體 學案

  教學過程

  一:【 課前預習】

  (一):【知識梳理】

  1.分解因式:把一個多項式化成 的形式,這種變形叫做把這個多項式分解因式.

  2.分解困式的方法:

 、盘峁珗F式法:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法.

 、七\用公式法:平方差公式: ;

  完全平方公式: ;

  3.分解因式的步驟:

  (1)分解 因式時,首先考慮是否有公因式,如果有公因式,一定先提取公團式,然后再考慮是否能用公式法 分解.

  (2)在用公式時,若是兩項,可考慮用平方差公式;若是三項,可考慮用完全平方公式;若是三項以上,可先進行適當?shù)姆纸M,然后分解因式。

  4.分解因式時常見的思維誤區(qū):

  提公因式時,其公因式應找字母指數(shù)最低的,而不是以首項為準.若有一項被全部提出,括號內的項 1易漏掉.分解不徹底,如保留中括號形式,還能繼續(xù)分解等

  (二):【課前練習】

  1.下列各組多項式中沒有公因式的是( )

  A.3x-2與 6x2-4x B.3(a-b)2與11(b-a)3

  C.mxmy與 nynx D.aba c與 abbc

  2. 下列各題中,分解因式錯誤的是( )

  3. 列多項式能用平方差公式分解因式的'是()

  4. 分解因式:x2+2xy+y2-4 =_____

  5. 分解因式:(1) ;

  (2) ;(3) ;

  (4) ;(5)以上三題用了 公式

  二:【經典考題剖析】

  1. 分解因式:

  (1) ;(2) ;(3) ;(4)

  分析:①因式分解時,無論有幾項,首先考慮提取公因式。提公因式時,不僅注意數(shù),也要 注意字母,字母可能是單項式也可能是多項式,一次提盡。

  ②當某項完全提出后,該項應為1

 、圩⒁ ,

  ④分解結果(1)不帶中括號;(2)數(shù)字因數(shù)在前,字母因數(shù)在后;單項式在前,多項式在后;(3)相同因式寫成冪的形式;(4 )分解結果應在指定范圍內不能再分解為止;若無指定范圍,一般在有理數(shù)范圍內分解。

  2. 分解因式:(1) ;(2) ;(3)

  分析:對于二次三項齊次式,將其中一個字母看作末知數(shù),另一個字母視為常數(shù)。首先考慮提公因式后,由余下因式的項數(shù)為3項,可考慮完全平方式或十字相乘法繼續(xù)分解;如果項數(shù)為2,可考慮平方差、立方差、立方和公式。(3)題無公因式,項數(shù)為2項,可考慮平方差公式先分解開,再由項數(shù)考慮選擇方法繼續(xù)分解。

  3. 計算:(1)

  (2)

  分析:(1)此題先分解因式后約分,則余下首尾兩數(shù)。

  (2)分解后,便有規(guī)可循,再求1到20xx的和。

  4. 分解因式:(1) ;(2)

  分析:對于四項或四項以上的多項式的因式分解,一般采用分組分解法,

  5. (1)在實數(shù)范圍內分解因式: ;

  (2)已知 、 、 是△ABC的三邊,且滿足 ,

  求證:△ABC為等邊三角形。

  分析:此題給出的是三邊之間的關系,而要證等邊三角形,則須考慮證 ,

  從已知給出的等式結構看出,應構造出三個完全平方式 ,

  即可得證,將原式兩邊同乘以2即可。略證:

  即△ABC為等邊三角形。

  三:【課后訓練】

  1. 若 是一個完全平方式,那么 的值是( )

  A.24 B.12 C.12 D.24

  2. 把多項式 因式分解的結果是( )

  A. B. C. D.

  3. 如果二次三項式 可分解為 ,則 的 值為( )

  A .-1 B.1 C. -2 D.2

  4. 已知 可以被在60~70之間的兩個整數(shù)整除,則這兩個數(shù)是( )

  A.61、63 B.61、65 C.61、67 D.63、65

  5. 計算:19982002= , = 。

  6. 若 ,那么 = 。

  7. 、 滿足 ,分解因式 = 。

  8. 因式分解:

  (1) ;(2)

  (3) ;(4)

  9. 觀察下列等式:

  想一想,等式左邊各項冪的底數(shù)與右邊冪的底數(shù)有何關 系?猜一猜可引出什么規(guī)律?用等式將其規(guī)律表示出來: 。

  10. 已知 是△ABC的三邊,且滿足 ,試判斷△ABC的形狀。閱讀下面解題過程:

  解:由 得:

 、

  ②

  即 ③

  △ABC為Rt△。 ④

  試問:以上解題過程是否正確: ;若不正確,請指出錯在哪一步?(填代號) ;錯誤原因是 ;本題結論應為 。

  四:【課后小結】

  布置作業(yè) 地綱

【因式分解教案】相關文章:

因式分解教案02-14

人教版因式分解教案01-04

因式分解教案(精選13篇)06-27

初中數(shù)學因式分解教案01-12

因式分解教案七篇06-20

因式分解優(yōu)秀教案(通用10篇)11-02

因式分解教案范文集合五篇04-19

教案中班教案07-15

高中教案教案03-05