国产精品入口免费视频_亚洲精品美女久久久久99_波多野结衣国产一区二区三区_农村妇女色又黄一级真人片卡

二次根式教案

時間:2024-09-04 15:12:03 教案 我要投稿

二次根式教案范文匯總8篇

  作為一名優(yōu)秀的教育工作者,就難以避免地要準備教案,教案有助于學生理解并掌握系統(tǒng)的知識。教案要怎么寫呢?下面是小編收集整理的二次根式教案8篇,僅供參考,大家一起來看看吧。

二次根式教案范文匯總8篇

二次根式教案 篇1

  教學設(shè)計思想

  新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實踐到理論再回到實踐,由淺入深,符合認知結(jié)構(gòu)的新模式。本節(jié)首先通過四個實際問題引出二次根式的概念,給出二次根式的意義。然后讓學生通過二次根式的意義和算術(shù)平方根的意義找出二次根式的三個性質(zhì)。本節(jié)通過學生所熟悉的實際問題建立二次根式的概念,使學生在經(jīng)歷將現(xiàn)實問題符號化的過程中,進一步體會二次根式的重要作用,發(fā)展學生的應(yīng)用意識。

  教學目標

  知識與技能

  1.知道什么是二次根式,并會用二次根式的意義解題;

  2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;

  過程與方法

  通過二次根式的概念和性質(zhì)的學習,培養(yǎng)邏輯思維能力;

  情感態(tài)度價值觀

  1.經(jīng)歷將現(xiàn)實問題符號化的.過程,發(fā)展應(yīng)用的意識;

  2.通過二次根式性質(zhì)的介紹滲透對稱性、規(guī)律性的數(shù)學美。

  教學重點和難點

  重點:(1)二次根式的意義;(2)二次根式中字母的取值范圍;

  難點:確定二次根式中字母的取值范圍。

  教學方法

  啟發(fā)式、講練結(jié)合

  教學媒體

  多媒體

  課時安排

  1課時

二次根式教案 篇2

  教學目標

  1.使學生進一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;

  2.熟練地進行二次根式的加、減、乘、除混合運算.

  教學重點和難點

  重點:含二次根式的式子的混合運算.

  難點:綜合運用二次根式的 性質(zhì)及運算法則化簡和計算含二次根式的式子.

  教學過程設(shè)計

  一、復習

  1.請同學回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

  指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.

  2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

  指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

  計算結(jié)果要把分母有理化.

  3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

  4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:

  二、例題

  例1 x取什么值時,下列各式在實數(shù)范圍內(nèi)有意義:

  分析:

  (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

  (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

  (4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

  x-2且x0.

  解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一個二次根式的.被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

  解 因為1-a>0,3-a0,所以

  a<1,|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

  問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

  分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.

  注意:

  所以在化簡過程中,

  例6

  分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據(jù)式子的結(jié)構(gòu)特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、課堂練習

  1.選擇題:

  A.a(chǎn)2B.a(chǎn)2

  C.a(chǎn)2D.a(chǎn)<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空題:

  4.計算:

  四、小結(jié)

  1.本節(jié)課復習的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學們要深刻理解并牢固掌握.

  2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

  3.運用二次根式的四個基本性質(zhì)進行二次根式的運算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.

  4.通過例題的討論,要學會綜合、靈活運用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.

  五、作業(yè)

  1.x是什么值時,下列各式在實數(shù)范圍內(nèi)有意義?

  2.把下列各式化成最簡二次根式:

二次根式教案 篇3

  目 標

  1. 熟練地運用二次根式的性質(zhì)化簡二次根式;

  2. 會運用二次根式解決簡單的實際問題;

  3. 進一步體驗二次根式及其運算的實際意義和應(yīng)用價值。

  教學設(shè)想

  本節(jié)課的重點是:二次根式及其運算的實際應(yīng)用;難點是:例7涉及多方面的知識和綜合運用,思路比較復雜。

  教 學 程序 與 策 略

  一、預習檢測

  1.解決節(jié)前問題:

  如圖,架在消防車上的云梯AB長為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

  歸納:

  在日常生活和生產(chǎn)實際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運算。

  二、合作交流:

  1、:如圖,扶梯AB的坡比(BE與AE的長度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的.頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)

  讓學生有充分的時間閱讀問題,并結(jié)合圖形分析問題:(1)所求的路程實際上是哪些線段的和?哪些線段的長是已知的?哪些線段的長是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運算?能化簡嗎?

  注意解題格式

  教 學 程 序 與 策 略

  三、鞏固練習:

  完成課本P17、1,組長檢查反饋;

  四、拓展提高:

  1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。

  師生共同分析解題思路,請學生寫出解題過程。

  五、課堂小結(jié):

  1.談一談:本節(jié)課你有什么收獲?

  2.運用二次根式解決簡單的實際問題時應(yīng)注意的的問題

  六、堂堂清

  1: 作業(yè)本(2)

  2:課本P17頁:第4、5題選做。

二次根式教案 篇4

  教學目的

  1.使學生掌握最簡二次根式的定義,并會應(yīng)用此定義判斷一個根式是否為最簡二次根式;

  2.會運用積和商的算術(shù)平方根的性質(zhì),把一個二次根式化為最簡二次根式。

  教學重點

  最簡二次根式的定義。

  教學難點

  一個二次根式化成最簡二次根式的方法。

  教學過程

  一、復習引入

  1.把下列各根式化簡,并說出化簡的根據(jù):

  2.引導學生觀察考慮:

  化簡前后的根式,被開方數(shù)有什么不同?

  化簡前的被開方數(shù)有分數(shù),分式;化簡后的被開方數(shù)都是整數(shù)或整式,且被開方數(shù)中開得盡方的因數(shù)或因式,被移到根號外。

  3.啟發(fā)學生回答:

  二次根式,請同學們考慮一下被開方數(shù)符合什么條件的二次根式叫做最簡二次根式?

  二、講解新課

  1.總結(jié)學生回答的內(nèi)容后,給出最簡二次根式定義:

  滿足下列兩個條件的二次根式叫做最簡二次根式:

  (1)被開方數(shù)的因數(shù)是整數(shù),因式是整式;

  (2)被開方數(shù)中不含能開得盡的因數(shù)或因式。

  最簡二次根式定義中第(1)條說明被開方數(shù)不含有分母;分母是1的例外。第(2)條說明被開方數(shù)中每個因式的指數(shù)小于2;特別注意被開方數(shù)應(yīng)化為因式連乘積的形式。

  2.練習:

  下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

  3.例題:

  例1 把下列各式化成最簡二次根式:

  例2 把下列各式化成最簡二次根式:

  4.總結(jié)

  把二次根式化成最簡二次根式的根據(jù)是什么?應(yīng)用了什么方法?

  當被開方數(shù)為整數(shù)或整式時,把被開方數(shù)進行因數(shù)或因式分解,根據(jù)積的算術(shù)平方根的`性質(zhì),把開得盡方的因數(shù)或因式用它的算術(shù)平方根代替移到根號外面去。

  當被開方數(shù)是分數(shù)或分式時,根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。

  此方法是先根據(jù)分式的基本性質(zhì)把被開方數(shù)的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

  三、鞏固練習

  1.把下列各式化成最簡二次根式:

  2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

  四、小結(jié)

  本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據(jù)積的算術(shù)平方根和商的算術(shù)平方根的性質(zhì)把一個根式化成最簡二次根式,特別注意當被開方數(shù)為多項式時要進行因式分解,被開方數(shù)為兩個分數(shù)的和則要先通分,再化簡。

  五、布置作業(yè)

  下列各式化成最簡二次根式:

二次根式教案 篇5

  【1】二次根式的加減教案

  教材分析:

  本節(jié)內(nèi)容出自九年級數(shù)學上冊第二十一章第三節(jié)的第一課時,本節(jié)在研究最簡二次根式和二次根式的乘除的基礎(chǔ)上,來學習二次根式的加減運算法則和進一步完善二次根式的化簡。本小節(jié)重點是二次根式的加減運算,教材從一個實際問題引出二次根式的加減運算,使學生感到研究二次根式的加減運算是解決實際問題的需要。通過探索二次根式加減運算,并用其解決一些實際問題,來提高我們用數(shù)學解決實際問題的意識和能力。另外,通過本小節(jié)學習為后面學生熟練進行二次根式的加減運算以及加、減、乘、除混合運算打下了鋪墊。

  學生分析:

  本節(jié)課的內(nèi)容是知識的延續(xù)和創(chuàng)新,學生積極主動的投入討論、交流、建構(gòu)中,自主探索、動手操作、協(xié)作交流,全班學生具有較扎實的知識和創(chuàng)新能力,通過自學、小組討論大部分學生能夠達到教學目標,少部分學生有困難,基礎(chǔ)差、自學能力差,因此要提供賞識性評價教學策略,給予個別關(guān)照、心理暗示以及適當?shù)木窦,克服自卑心理,讓他們逐步樹立自尊心與自信心,從而完成自己的學習任務(wù)。

  設(shè)計理念:

  新課程有效課堂教學明確倡導,學生是學習的'主人,在學生自學文本的基礎(chǔ)上動手實踐、自主探究、合作交流,來倡導新的學習觀,讓他們完成二次根式加減知識研究。教師從過去知識的傳授者轉(zhuǎn)變?yōu)閷W生的自主性、探究性、合作性學習活動的設(shè)計者和組織者,與學生零距離接觸共同探究。在教學過程中教師設(shè)置開放的、面向?qū)嶋H的、富有挑戰(zhàn)性的問題情境,使學生在嘗試、探索、思考、交流與合作中培養(yǎng)分析、歸納、總結(jié)的能力,把“要我學”變成“我要學”,通過開放式命題,嘗試從不同角度尋求解決問題的方法,養(yǎng)成良好的學習習慣,掌握學習策略,并根據(jù)活動中示范和指導培養(yǎng)學生大膽闡述并討論觀點,說明所獲討論的有效性,并對推論進行評價。從而營造一個接納的、支持的、寬容的良好氛圍進行學習。

  教學目標知識與技能目標:

  會化簡二次根式,了解同類二次根式的概念,會進行簡單的二次根式的加減法;通過加減運算解決生活的實際問題。

  過程與方法目標:

  通過類比整式加減法運算體驗二次根式加減法運算的過程;學生經(jīng)歷由實際問題引入數(shù)學問題的過程,發(fā)展學生的抽象概括能力。

  情感態(tài)度與價值觀:

  通過對二次根式加減法的探究,激發(fā)學生的探索熱情,讓學生充分參與到數(shù)學學習的過程中來,使他們體驗到成功的樂趣.

  重點、難點:重點:

  合并被開放數(shù)相同的同類二次根式,會進行簡單的二次根式的加減法。

  難點:

  二次根式加減法的實際應(yīng)用。

  關(guān)鍵問題 :

  了解同類二次根式的概念,合并同類二次根式,會進行二次根式的加減法。

  教學方法:.

  1. 引導發(fā)現(xiàn)法:在教師的啟發(fā)引導下,鼓勵學生積極參與,與實際問題相結(jié)合,采用“問題—探索—發(fā)現(xiàn)”的研究模式,讓學生自主探索,合作學習,歸納結(jié)論,掌握規(guī)律。

  2. 類比法:由實際問題導入二次根式加減運算;類比合并同類項合并同類二次根式。

  3.嘗試訓練法:通過學生嘗試,教師針對個別問題進行點撥指導,實現(xiàn)全優(yōu)的教育效果。

  【2】二次根式的加減教案

  教學目標:

  1.知識目標:二次根式的加減法運算

  2.能力目標:能熟練進行二次根式的加減運算,能通過二次根式的加減法運算解決實際問題。

  3.情感態(tài)度:培養(yǎng)學生善于思考,一絲不茍的科學精神。

  重難點分析:

  重點:能熟練進行二次根式的加減運算。

  難點:正確合并被開方數(shù)相同的二次根式,二次根式加減法的實際應(yīng)用。

  教學關(guān)鍵:通過復習舊知識,運用類比思想方法,達到溫故知新的目的;運用創(chuàng)設(shè)問題激發(fā)學生求知欲;通過學生全面參與學習(分層次要求),達到每個學生在學習數(shù)學上有不同的發(fā)展。

  運用教具:小黑板等。

  教學過程:

問題與情景

師生活動

設(shè)計目的

活動一:

情景引入,導學展示

1.把下列二次根式化為最簡二次根式: , ; , , 。上述兩組二次根式,有什么特點?

2.現(xiàn)有一塊長7.5dm、寬5dm的木板,能否采用如教科書圖21.3-所示的方式,在這塊木板上截出兩個面積分別是8dm 和18dm 的正方形木板?

這道題是舊知識的回顧,老師可以找同學直接回答。對于問題,老師要關(guān)注:學生是否能熟練得到正確答案。 教師傾聽學生的交流,指導學生探究。

問:什么樣的二次根式能進行加減運算,運算到那一步為止。

由此也可以看到二次根式的加減只有通過找出被開方數(shù)相同的二次根式的途徑,才能進行加減。

加強新舊知識的聯(lián)系。通過觀察,初步認識同類二次根式。

引出二次根式加減法則。

3. A、B層同學自主學習15頁例1、例2、例3,C層同學至少完成例1、例2的學習。

例1.計算:

(1) ;

(2) - ;

例2. 計算:

1)

2)

例3.要焊接一個如教科書圖21.3—2所示的鋼架,大約需要多少米鋼材(精確到0.1米)?

活動二:分層練習,合作互助

1.下列計算是否正確?為什么?

(1)

(2) ;

(3) 。

2.計算:

(1) ;

(2)

(3)

(4)

3.(見課本16頁)

補充:

活動三:分層檢測,反饋小結(jié)

教材17頁習題:

A層、 B層:2、3.

C層1、2.

小結(jié):

這節(jié)課你學到了什么知識?你有什么收獲?

作業(yè):課堂練習冊第5、6頁。

自學的同時抽查部分同學在黑板上板書計算過程。抽2名C層同學在黑板上完成例1板書過程,學生在計算時若出現(xiàn)錯誤,抽2名B層同學訂正。抽2名B層同學在黑板上完成例2板書過程,若出現(xiàn)錯誤,再抽2名A層同學訂正。抽1名A層同學在黑板上完成例3板書過程,并做適當?shù)姆治鲋v解。

此題是聯(lián)系實際的題目,需要學生先列式,再計算。并將結(jié)果精確到0.1 m, 學生考慮問題要全面,不能漏掉任何一段鋼材。

老師提示:

1)解決問題的方案是否得當;2)考慮的問題是否全面。3)計算是否準確。

A層同學完成16頁練習1、2、3;B層同學完成練習1、2,可選做第3題;C層同學盡量完成練習1、2。多數(shù)同學完成后,讓學生在小組內(nèi)互相檢查,有問題時共同分析矯正或請教老師。也可以抽查部分同學。例如:抽3名C層同學口答練習1;抽4名B層或C層同學在黑板上板書練習第2題;抽1名A層或B層同學在黑板上板書練習第3題后再分析講解。

點撥:1)對 的化簡是否正確;2)當根式中出現(xiàn)小數(shù)、分數(shù)、字母時,是否能正確處理;

3)運算法則的運用是否正確

先測試,再小組內(nèi)互批,查找問題。學生反思本節(jié)課學到的知識,談自己的感受。

小結(jié)時教師要關(guān)注:

1)學生是否抓住本課的重點;

2)對于常見錯誤的認識。

把學習目標由高到低分為A、B、C三個層次,教學中做到分層要求。

學生學習經(jīng)歷由淺到深的過程,可以提高學生能力,同時有利于激發(fā)學生的探索知識的欲望。

二次根式的加減運算融入實際問題中去,提高了學生的.學習興趣和對數(shù)學知識的應(yīng)用意識和能力。

小組成員互相檢查學生對于新的知識掌握的情況,鞏固學生剛掌握的知識能力。達到共同把關(guān)、合作互助的目的。

培養(yǎng)學生的計算的準確性,以培養(yǎng)學生科學的精神。

對課堂的問題及時反饋,使學生熟練掌握新知識。

每個學生對于知識的理解程度不同,學生回答時教師要多鼓勵學生。

二次根式教案 篇6

  教學目標

  課標要求:學生要學會學習、自主學習,要為學生終生學習打下堅實的基礎(chǔ),根據(jù)教學大綱和新課標的要求,根據(jù)教材內(nèi)容和學生的特點我確定了本節(jié)課的教學目標 1、了解二次根式的概念 2、了解二次根式的基本性質(zhì),經(jīng)歷觀察、比較、總結(jié)二次根式的基本性質(zhì)的過程,發(fā)展學生的歸納概括能力。 3、通過對二次根式的概念和性質(zhì)的探究,提高數(shù)學探究能力和歸納表達能力。 4、學生經(jīng)歷觀察、比較、總結(jié)和應(yīng)用等數(shù)學活動,感受數(shù)學活動充滿了探索性與創(chuàng)造性,體驗發(fā)現(xiàn)的樂趣,并提高應(yīng)用的意識。

  教學重點:二次根式的概念和基本性質(zhì)

  教學難點:二次根式的基本性質(zhì)的靈活運用

  教法和學法

  教學活動的本質(zhì)是一種合作,一種交流。學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引導者與合作者,本節(jié)課主要采用自主學習,合作探究,引領(lǐng)提升的方式展開教學。依據(jù)學生的年齡特點和已有的知識基礎(chǔ),本節(jié)課注重加強知識間的縱向聯(lián)系,,拓展學生探索的空間,體現(xiàn)由具體到抽象的認識過程。為了為后續(xù)學習打下堅實的基礎(chǔ),例如在“銳角三角函數(shù)”一章中,會遇到很多實際問題,在解決實際問題的過程中,要遇到將二次根式化成最簡二次根式等,本課適當加強練習,讓學生養(yǎng)成聯(lián)系和發(fā)展的觀點學習數(shù)學的習慣。

  教學過程

  活動一:根據(jù)學生已有知識探究二次根式的概念 1.探究二次根式概念 由四個實際問題(三個幾何問題,一個物理問題)入手,設(shè)置問題情境,讓學生感受到研究二次根式來源于生活又服務(wù)于生活。 思考:用帶有根號的式子填空,看看寫出的結(jié)果有什么特點? (1)要做一個兩條直角邊的長分別為7cm和4cm的三角尺,斜邊的長應(yīng)為 cm

  (2)面積為S的正方形的邊長為

  (3)要修建一個面積為6.28m2的圓形噴水池,它的半徑為m(∏取3.14)

  (4)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下時的高度h(單位:m)滿足關(guān)系h=5t2.如果用含有h的式子表示t,則t= 學生發(fā)現(xiàn)所填結(jié)果都表示一個數(shù)的算術(shù)平方根,教師引導學生用一個式子表示這些有共同特點的式子。學生表示為,此時教師啟發(fā)學生回憶已學平方根的`性質(zhì)讓學生總結(jié)出a這一條件。在此基礎(chǔ)上總結(jié)出二次根式的概念。 2.例題評析 例1:哪些為二次根式? 練習:x取何值時下列各式有意義,通過4小題的訓練,讓學生體會二次根式概念的初步應(yīng)用。加深對二次根式定義的理解,并注重新舊知識間的聯(lián)系,用轉(zhuǎn)化的思想解決問題,總結(jié)出解題規(guī)律:求未知數(shù)的取值范圍即轉(zhuǎn)化為①被開方數(shù)大于等于0②分母不為0列不等式或不等式組解決問題。

  活動二:探究二次根式的性質(zhì)1 1.探究(a)與0的關(guān)系 學生分類討論探究出:(a)是一個非負數(shù),此時歸納出二次根式的第一個性質(zhì):雙重非負性。培養(yǎng)學生的分類討論和概括能力。例2:,則變式:,

  活動三:探究二次根式的性質(zhì)2 探究()2=a(a)由課本具體的正數(shù)和零入手來研究二次根式的第二個性質(zhì),首先讓學生通過探究活動感受這條結(jié)論,然后再從算術(shù)平方根的意義出發(fā),結(jié)合具體例子對這條結(jié)論進行分析,引導學生由具體到抽象,得出一般的結(jié)論,并發(fā)現(xiàn)開平方運算與平方運算的關(guān)系,培養(yǎng)學生由特殊到一般的思維方式,提高歸納、總結(jié)的能力。前兩題學生口述教師板書,后面的兩題由學生板演引導學生分析(2)(4)實質(zhì)是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡二次根式(簡單的分母有理化)做好鋪墊。 例4:在實數(shù)范圍內(nèi)分解因式

  活動四:探究二次根式的性質(zhì)3 3.探究 在活動三的基礎(chǔ)上出示課本第4頁的探究: 引導學生比較活動三與活動四探究中兩組題目的不同之處,活動三中的題目是對非負數(shù)先進行開平方運算,再進行平方運算;而活動四中的題目正好相反,是先進行平方運算,再進行開平方運算。再次由特殊到一般的讓學生歸納出二次根式的又一個性質(zhì)。培養(yǎng)學生觀察、對比的能力和意識。 此時引導學生談一談對()2和的聯(lián)系和區(qū)別 相同點:①都有平方和開平方運算 ②運算結(jié)果都是非負數(shù) ③僅當a時,()2= 不同點:①從形式和運算順序看:()2先開方后平方,先平方后開方 ②從a的取值范圍看:()2(a),(a為任意數(shù)) ③從運算結(jié)果看:()2=a(a),(a為任意數(shù)

二次根式教案 篇7

  1.請同學們回憶(≥0,b≥0)是如何得到的?

  2.學生觀察下面的例子,并計算:

  由學生總結(jié)上面兩個式的關(guān)系得:

  類似地,請每個同學再舉一個例子,然后由這些特殊的例子,得出:

 。ā0,b0)

  使學生回憶起二次根式乘法的運算方法的推導過程.

  類似地,請每個同學再舉一個例子,

  請學生們思考為什么b的取值范圍變小了?

  與學生一起寫清解題過程,提醒他們被開方式一定要開盡.

  對比二次根式的乘法推導出除法的運算方法

  增強學生的`自信心,并從一開始就使他們參與到推導過程中來.

  對學生進一步強化被開方數(shù)的取值范圍,以及分母不能為零.

  強化學生的解題格式一定要標準.

  教學過程設(shè)計

  問題與情境師生行為設(shè)計意圖

  活動二自我檢測

  活動三挑戰(zhàn)逆向思維

  把反過來,就得到

 。ā0,b0)

  利用它就可以進行二次根式的化簡.

  例2化簡:

 。1)

 。2)(b≥0).

  解:(1)(2)練習2化簡:

 。1)(2)活動四談?wù)勀愕氖斋@

  1.商的算術(shù)平方根的性質(zhì)(注意公式成立的條件).

  2.會利用商的算術(shù)平方根的性質(zhì)進行簡單的二次根式的化簡.

  找四名學生上黑板板演,其余學生在練習本上計算,然后再找學生指出不足.

  二次根式的乘法公式可以逆用,那除法公式可以逆用嗎?

  找學生口述解題過程,教師將過程寫在黑板上.

  請學生仿照例題自己解決這兩道小題,組長檢查本組的學習情況.

  請學生自己談收獲,并總結(jié)本節(jié)課的主要內(nèi)容.

  為了更快地發(fā)現(xiàn)學生的錯誤之處,以便糾正.

  此處進行簡單處理是因為有二次根式的乘法公式的逆用作基礎(chǔ)理解并不難.

  讓學困生在自己做題時有一個參照.

  充分發(fā)揮組長的作用,盡可能在課堂上將問題解決.

二次根式教案 篇8

  一、教學目標

  1。使學生知道什么是最簡二次根式,遇到實際式子能夠判斷是不是最簡二次根式。

  2。使學生掌握化簡一個二次根式成最簡二次根式的方法。

  3。使學生了解把二次根式化簡成最簡二次根式在實際問題中的應(yīng)用。

  二、教學重點和難點

  1。重點:能夠把所給的二次根式,化成最簡二次根式。

  2。難點:正確運用化一個二次根式成為最簡二次根式的方法。

  三、教學方法

  通過實際運算的例子,引出最簡二次根式的概念,再通過解題實踐,總結(jié)歸納化簡二次根式的`方法。

  四、教學手段

  利用投影儀。

  五、教學過程

 。ㄒ唬┮胄抡n

  提出問題:如果一個正方形的面積是0。5m2,那么它的邊長是多少?能不能求出它的近似值?

  了。這樣會給解決實際問題帶來方便。

 。ǘ┬抡n

  由以上例子可以看出,遇到一個二次根式將它化簡,為解決問題創(chuàng)

  這兩個二次根式化簡前后有什么不同,這里要引導學生從兩個方面考慮,一方面是被開方數(shù)的因數(shù)化簡后是否是整數(shù)了,另一方面被開方數(shù)中還有沒有開得盡方的因數(shù)。

  總結(jié)滿足什么樣的條件是最簡二次根式。即:滿足下列兩個條件的二次根式,叫做最簡二次根式:

  1。被開方數(shù)的因數(shù)是整數(shù),因式是整式。

  2。被開方數(shù)中不含能開得盡方的因數(shù)或因式。

  例1 指出下列根式中的最簡二次根式,并說明為什么。

  分析:

  說明:這里可以向?qū)W生說明,前面兩小節(jié)化簡二次根式,就是要求化成最簡二次根式。前面二次根式的運算結(jié)果也都是最簡二次根式。

  例2 把下列各式化成最簡二次根式:

  說明:引導學生觀察例2題中二次根式的特點,即被開方數(shù)是整式或整數(shù),再啟發(fā)學生總結(jié)這類題化簡的方法,先將被開方數(shù)或被開方式分解因數(shù)或分解因式,然后把開得盡方的因數(shù)或因式開出來,從而將式子化簡。

  例3 把下列各式化簡成最簡二次根式:

  說明:

  1。引導學生觀察例題3中二次根式的特點,即被開方數(shù)是分數(shù)或分式,再啟發(fā)學生總結(jié)這類題化簡的方法,先利用商的算術(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化化簡。

  2。要提問學生

  問題,通過這個小題使學生明確如何使用化簡中的條件。

  通過例2、例3總結(jié)把一個二次根式化成最簡二次根式的兩種情況,并引導學生小結(jié)應(yīng)該注意的問題。

  注意:

 、倩啎r,一般需要把被開方數(shù)分解因數(shù)或分解因式。

 、诋斠粋式子的分母中含有二次根式時,一般應(yīng)該把它化簡成分母中不含二次根式的式子,也就是把它的分母進行有理化。

  (三)小結(jié)

  1。滿足什么條件的根式是最簡二次根式。

  2。把一個二次根式化成最簡二次根式的主要方法。

 。ㄋ模┚毩

  1。指出下列各式中的最簡二次根式:

  2。把下列各式化成最簡二次根式:

  六、作業(yè)

  教材P。187習題11。4;A組1;B組1。

  七、板書設(shè)計

【二次根式教案】相關(guān)文章:

二次根式教案05-15

二次根式的加減教案01-19

二次根式教案優(yōu)秀07-31

二次根式教案(精選11篇)01-18

二次根式教案15篇02-16

二次根式教案(15篇)02-27

二次根式教案匯編5篇02-03

二次根式教案模板9篇04-06

二次根式教案范文六篇04-03

關(guān)于二次根式教案九篇04-05