- 《平行四邊形的認(rèn)識》教案 推薦度:
- 平行四邊形面積教案 推薦度:
- 平行四邊形面積教案 推薦度:
- 相關(guān)推薦
平行四邊形教案三篇
作為一位無私奉獻(xiàn)的人民教師,時常要開展教案準(zhǔn)備工作,教案是實(shí)施教學(xué)的主要依據(jù),有著至關(guān)重要的作用。快來參考教案是怎么寫的吧!以下是小編收集整理的平行四邊形教案3篇,僅供參考,大家一起來看看吧。
平行四邊形教案 篇1
教學(xué)內(nèi)容:人教版第九冊 64 – 67頁
說教材: 教材先給出方格上的平行四邊形和長方形,從數(shù)圖形中的方格引出平行四邊形的面積。利用數(shù)方格的方法來計算面積仍然是一種計算面積的方法。遇到圖形中邊與邊之間有不成直角的情況時,該怎樣計算面積,學(xué)生還沒有學(xué)過。,教材通過數(shù)的方法,轉(zhuǎn)化的方法,可以把新知識轉(zhuǎn)化為舊知識,從而使新問題得到解決。
教學(xué)重點(diǎn):平行四邊形面積的推導(dǎo)過程。
本課采用的教法:自學(xué)法 、 轉(zhuǎn)化方法、小組合作法、實(shí)驗(yàn)法。
學(xué)法:1、自主學(xué)習(xí)法
2、小組合作探究學(xué)習(xí)法。
教學(xué)程序:
一、創(chuàng)設(shè)問題情景, 為新課作鋪墊。
請同學(xué)們幫李師傅的一個忙,
求出下面的面積,你是怎樣想的?3厘米
5厘米
二、突出學(xué)生主體地位,發(fā)展學(xué)生的創(chuàng)新思維。
首先采用自學(xué)課本64頁。師提出問題,通過自學(xué),同學(xué)們發(fā)現(xiàn)了什么,想到了什么?你猜到了什么?
有的同學(xué)說:長方形面積與平行四邊形面積相等(數(shù)出來的)。 有的說:我用割補(bǔ)的方法把平形四邊形拼成一個長方形,長方形的面積與平行四邊形面積相等。還 有的說:我發(fā)現(xiàn)平行四邊形的底相當(dāng)與長方形的長,平行四邊形的'高相當(dāng)長方形的寬。 有的說:我猜想平行四邊形的面積等于底乘高。通過同學(xué)們發(fā)現(xiàn)與猜想
三、小組合作,培養(yǎng)學(xué)生的合作精神。
小組合作交流,動手操作并說出你的思考過程這樣使學(xué)生能人人參與,個個思考。匯報交流結(jié)果(小組派出代表到前邊演示操作過程邊述說)學(xué)生甲:我沿著平行四邊形的高剪下一個三角形補(bǔ)到平行四邊形的右邊,拼成一個長方形。長方形的長相當(dāng)與平形四邊形的底,寬相當(dāng)與平行四邊形的高。長方形面積與平行四邊形的面積相等。我想平行四邊形面積=底乘高
學(xué)生乙(與前邊的內(nèi)容大概相同復(fù)述一遍,就是平行四邊形的高作在中間)
學(xué)生丁我還有一種方法,我將平行四邊形沿著對角劃一條線,分成兩個面積相等三角形,雖然拼成還是一個原平行四邊形。但學(xué)生爭著說出與別人不同的方法,把自己的想法盡量展現(xiàn)在同學(xué)面前,其中不乏有閃光的思維亮點(diǎn)。
四例題獨(dú)立完成,體現(xiàn)學(xué)生自己解決問題的能力。
例題自己解決, 學(xué)生切實(shí)體驗(yàn)到數(shù)學(xué)的應(yīng)用價值,提高學(xué)生學(xué)習(xí)數(shù)學(xué)信心。
板書設(shè)計:
長方形面積==長乘寬
平行四邊形面積=底乘高
s= a h
平行四邊形教案 篇2
教學(xué)目標(biāo):
知識技能:認(rèn)識平行四邊形,能在方格紙上畫平行四邊形。
過程方法:在對簡單圖形分類的過程中,經(jīng)歷認(rèn)識平行四邊形的過程。
情感態(tài)度:鼓勵學(xué)生發(fā)現(xiàn)日常生活中形狀是平行四邊形的物體,初步體會平行四邊形的作用。
教學(xué)過程:
一、 創(chuàng)設(shè)情境
1、認(rèn)識平行四邊形
。1)出示下圖,認(rèn)真觀察。94頁的一組圖形,讓學(xué)生仔細(xì)觀察,然后提出分類的.要求。
。2)在交流的基礎(chǔ)上,讓學(xué)生了解什么樣的圖形叫做平行四邊形。
。3)引導(dǎo)學(xué)生從自動拉門、籬笆中找出平行四邊形。
2、感悟平行四邊形的特征
、艑W(xué)會畫平行四邊形。
教師掩飾在方格紙上畫一個平行四邊形。
、埔龑(dǎo)學(xué)生找到平行四邊形的不穩(wěn)定性。
二、實(shí)踐與應(yīng)用
1.下面哪些圖形是平行四邊形?把它涂上色。
2.在方格紙上畫一個大一點(diǎn)的平行四邊形。
三、全課小結(jié)
學(xué)生匯報本節(jié)課的收獲。
平行四邊形教案 篇3
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
平行四邊形對角線的性質(zhì).
2.內(nèi)容解析
這節(jié)課承接了上一節(jié)平行四邊形的性質(zhì):對邊相等,對角相等,本節(jié)繼續(xù)研究對角線互相平分的性質(zhì),課本先設(shè)置一個探究欄目,讓學(xué)生發(fā)現(xiàn)結(jié)論,形成猜想,然后利用三角形全等證明這個結(jié)論,對角線互相平分是平行四邊形的重要性質(zhì),在九年級上冊“旋轉(zhuǎn)”一章,通過旋轉(zhuǎn)平行四邊形,得到平行四邊形是中心對稱圖形和對角線互相平分,學(xué)生會有進(jìn)一步體會.平行四邊形是最基本的幾何圖形,它在生活中有著十分廣泛的應(yīng)用.這不僅表現(xiàn)在日常生活中有許多平行四邊形的圖案,還包括其性質(zhì)在生產(chǎn)、生活各領(lǐng)域的實(shí)際應(yīng)用.是中心對稱圖形的具體化,是以后學(xué)習(xí)平行四邊形判定的重要依據(jù).
教科書例2是的平行四邊形對角線的性質(zhì)的直接運(yùn)用,而且涉及勾股定理以及平行四邊形面積的計算.
基于以上分析,本節(jié)課的教學(xué)重點(diǎn)是:平行四邊形對角線性質(zhì)的探究與應(yīng)用.
二、目標(biāo)和目標(biāo)解析
1.目標(biāo)
(1)探究并掌握平行四邊形對角線互相平分的性質(zhì).
(2)能綜合運(yùn)用平行四邊形的性質(zhì)解決平行四邊形的有關(guān)計算問題,和簡單的證明題.
2.目標(biāo)解析
達(dá)成目標(biāo)(1)的標(biāo)志是:能發(fā)現(xiàn)平行四邊形對角線互相平分這一結(jié)論并形成猜想,會利用三角形全等證明猜想.
達(dá)成目標(biāo)(2)的標(biāo)志是:能發(fā)現(xiàn)平行四邊形的邊、角、對角線等基本要素間的關(guān)系,會運(yùn)用等量代換等進(jìn)行線段長、圖形面積等的計算,掌握簡單的邏輯論證.
三、教學(xué)問題診斷分析
本節(jié)課在已學(xué)習(xí)了三角形全等證明,平行四邊形定義,平行四邊形邊、角的性質(zhì)的基礎(chǔ)上,在積累了一定的經(jīng)驗(yàn)的情況下學(xué)習(xí)本節(jié)課內(nèi)容.例2是既是鞏固平行四邊形對角線互相平分的性質(zhì),又復(fù)習(xí)了勾股定理以及平行四邊形面積的計算.這些問題常常需要運(yùn)用勾股定理求平行四邊形的高或底.這些問題比較綜合,需要靈活運(yùn)用所學(xué)的有關(guān)知識加以解決.
基于以上分析,本節(jié)課的教學(xué)難點(diǎn)是:綜合運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計算.
四、教學(xué)過程設(shè)計
引言:前面我們研究了平行四邊形的邊、角這兩個基本要素的性質(zhì),下面我們研究平行四邊形對角線的性質(zhì).
1. 引入要素 探究性質(zhì)
問題1 我們研究平行四邊形邊、角這兩個要素的.性質(zhì)時,經(jīng)歷了怎樣的過程?
師生活動:學(xué)生回顧我們研究平行四邊形邊、角這兩個要素的性質(zhì)時經(jīng)歷的過程,并請學(xué)生代表回答.
設(shè)計意圖:回顧研究研究平行四邊形邊、角這兩個要素的性質(zhì)時經(jīng)歷的過程,總結(jié)研究平行四邊形的性質(zhì)的一般活動過程(即觀察、度量、猜想、證明等),積累研究圖形的活動經(jīng)驗(yàn),為本節(jié)課研究對角線要素作準(zhǔn)備.
問題2如圖,在ABCD中,連接AC,BD,并設(shè)它們相交于點(diǎn)O,OA與OC,OB與OD有什么關(guān)系?你能證明發(fā)現(xiàn)的結(jié)論嗎?
師生活動:啟發(fā)學(xué)生去發(fā)現(xiàn)并猜想:平行四邊形的對角線互相平分.
你能證明上述猜想嗎?
教師操作投影儀,提出下面問題:
圖中有哪些三角形全等?哪些線段是相等的?請同學(xué)們用多種方法加以驗(yàn)證.
學(xué)生合作學(xué)習(xí),交流自己的思路,并討論不同的驗(yàn)證思路.
教師點(diǎn)撥:圖中有四對三角形全等,分別是:△AOB≌△COD,△AOD≌△COB,
△ABD≌△BCD,△ADC≌△CBA.有如下線段相等:OA=OC,OB=OD,AD=BC,AB=DC證明中應(yīng)用到“AAS”,“ASA”證明.
師生歸納整理:
定理:平行四邊形的對角線互相平分.
我們證明了平行四邊形具有以下性質(zhì):
(1)平行四邊形的對邊相等;
(2)平行四邊形的對角相等;
(3)平行四邊形的對角線互相平分.
設(shè)計意圖:應(yīng)用三角形全等的知識,猜想并驗(yàn)證所要學(xué)習(xí)的內(nèi)容.
2.例題解析 應(yīng)用所學(xué)
問題3如圖,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的長以及ABCD的面積.
師生活動:教師分析解題思路, 可以利用平行四邊形對邊相等求出BC=AD=8,CD=AB=10,在求AC長度時,因?yàn)椤螦CB=90°,可以在Rt△ACB中應(yīng)用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面積是48,學(xué)生板演解題過程.
變式追問:在上題中,直線EF過點(diǎn)O,且與AB,CD分別相交于點(diǎn)E,F(xiàn).求證:OE=OF.圖中還在哪些相等的量?
設(shè)計意圖:對于幾何計算或證明,分析思路和方法是根本,本題既鞏固平行四邊形對角線互相平分的性質(zhì),又復(fù)習(xí)勾股定理和平行四邊形面積計算的知識,通過本例,讓學(xué)生學(xué)會如何分析,滲透“綜合分析法”. 讓學(xué)生理解平行四邊形對角線互相平分的性質(zhì)的應(yīng)用價值.
3.課堂練習(xí),鞏固深化
(1)ABCD的周長為60cm,對角線交于O,△AOB的周長比△BOC的周長大8cm,則AB、BC的長分別是_________.
(2)如圖,在ABCD中,BC=10,AC=8,BD=14,△AOD的周長是多少?△ABC與△DBC的周長哪個長?長多少?
設(shè)計意圖:通過練習(xí),深化理解平行四邊形的性質(zhì),提高選擇運(yùn)用平行四邊形定義、性質(zhì)解決問題的能力.
4.反思與小結(jié)
(1)我們學(xué)習(xí)了平行四邊形的哪些性質(zhì)?
(2)結(jié)合本節(jié)的學(xué)習(xí),談?wù)勓芯科叫兴倪呅涡再|(zhì)的思想方法.
(3)根據(jù)研究幾何圖形的基本套路,你認(rèn)為我們還將研究平行四邊形的什么問題?
5.布置作業(yè)
教科書P49頁習(xí)題18.1 第3題;
教科書第51頁第14題.
【平行四邊形教案】相關(guān)文章:
《平行四邊形的面積》教案01-02
平行四邊形面積教案02-09
《平行四邊形的認(rèn)識》教案03-15
平行四邊形的面積教案11-08
《平行四邊形面積的計算》教案09-14
平行四邊形面積教案2篇02-11
平行四邊形的面積教案15篇11-27
《平行四邊形的面積》教學(xué)反思04-14
平行四邊形面積的教學(xué)反思04-23
平行四邊形的面積教學(xué)反思04-14