有關(guān)平行四邊形教案3篇
作為一名無(wú)私奉獻(xiàn)的老師,時(shí)常會(huì)需要準(zhǔn)備好教案,教案有利于教學(xué)水平的提高,有助于教研活動(dòng)的開(kāi)展。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編整理的平行四邊形教案3篇,希望對(duì)大家有所幫助。
平行四邊形教案 篇1
【實(shí)驗(yàn)?zāi)康摹?/strong>
驗(yàn)證互成角度的兩個(gè)力合成時(shí)的平行四邊形定則。
【實(shí)驗(yàn)原理】
等效法:使一個(gè)力F的作用效果和兩個(gè)力F1、F2的作用效果都是讓同一條一端固定的橡皮條伸長(zhǎng)到某點(diǎn),所以這一個(gè)力F就是兩個(gè)力F1和F2的合力,作出F的圖示,再根據(jù)平行四邊形定則作出F1和F2的合力F的圖示,比較F和F的大小和方向是否都相同。
【實(shí)驗(yàn)器材】
方木板一塊、白紙、彈簧測(cè)力計(jì)(兩只)、橡皮條、細(xì)繩套(兩個(gè))、三角板、刻度尺、圖釘(幾個(gè))、細(xì)芯鉛筆。
【實(shí)驗(yàn)步驟】
⑴用圖釘把白紙釘在水平桌面上的方木板上,并用圖釘把橡皮條的一端固定在A點(diǎn),橡皮條的另一端拴上兩個(gè)細(xì)繩套。
、朴脙芍粡椈蓽y(cè)力計(jì)分別鉤住細(xì)繩套,互成角度地拉像皮條,使橡皮條伸長(zhǎng)到某一位置O,如圖所示,記錄兩彈簧測(cè)力計(jì)的讀數(shù),用鉛筆描下O點(diǎn)的位置及此時(shí)兩細(xì)繩套的方向。
⑶只用一只彈簧測(cè)力計(jì)通過(guò)細(xì)繩套把橡皮條的結(jié)點(diǎn)拉到同樣的'位置O,記下彈簧測(cè)力計(jì)的讀數(shù)和細(xì)繩套的方向。
⑷用鉛筆和刻度尺從結(jié)點(diǎn)O沿兩條細(xì)繩套方向畫(huà)直線,按選定的標(biāo)度作出這兩只彈簧測(cè)力計(jì)的讀數(shù)F1和F2的圖示,并以F1和F2為鄰邊用刻度尺作平行四邊形,過(guò)O點(diǎn)畫(huà)平行四邊形的對(duì)角線,此對(duì)角線即為合力F的圖示。
、捎每潭瘸邚腛點(diǎn)按同樣的標(biāo)度沿記錄的方向作出只用一只彈簧測(cè)力計(jì)的拉力F的圖示。
、时容^一下,力F與用平行四邊形定則求出的合力F的大小和方向是否相同。
錦囊妙訣:白紙釘在木板處,兩秤同拉有角度,讀數(shù)畫(huà)線選標(biāo)度,再用一秤拉同處,作出力的矢量圖。
交流與思考:每次實(shí)驗(yàn)都必須保證結(jié)點(diǎn)的位置保持不變,這體現(xiàn)了怎樣的物理思想方法?若兩次橡皮條的伸長(zhǎng)長(zhǎng)度相同,能否驗(yàn)證平行四邊形定則?
提示:每次實(shí)驗(yàn)保證結(jié)點(diǎn)位置保持不變,是為了使合力的作用效果與兩個(gè)分力共同作用的效果相同,這是物理學(xué)中等效替換的思想方法。由于力不僅有大小,還有方向,若兩次橡皮條的伸長(zhǎng)長(zhǎng)度相同但結(jié)點(diǎn)位置不同,說(shuō)明兩次效果不同,不滿(mǎn)足合力與分力的關(guān)系,不能驗(yàn)證平行四邊形定則。
【誤差分析】
、庞脙蓚(gè)測(cè)力計(jì)拉橡皮條時(shí),橡皮條、細(xì)繩和測(cè)力計(jì)不在同一個(gè)平面內(nèi),這樣兩個(gè)測(cè)力計(jì)的水平分力的實(shí)際合力比由作圖法得到的合力小。
⑵結(jié)點(diǎn)O的位置和兩個(gè)測(cè)力計(jì)的方向畫(huà)得不準(zhǔn),造成作圖的誤差。
、莾蓚(gè)分力的起始夾角太大,如大于120,再重做兩次實(shí)驗(yàn),為保證結(jié)點(diǎn)O位置不變(即保證合力不變),則變化范圍不大,因而測(cè)力計(jì)示數(shù)變化不顯著,讀數(shù)誤差大。
⑷作圖比例不恰當(dāng)造成作圖誤差。
交流與思考:實(shí)驗(yàn)時(shí)由作圖法得到的合力F和單個(gè)測(cè)力計(jì)測(cè)量的實(shí)際合力F忘記標(biāo)注而造成錯(cuò)亂,你如何加以區(qū)分?
提示:由彈簧測(cè)力計(jì)測(cè)量合力時(shí)必須使橡皮筋伸直,所以與AO共線的合力表示由單個(gè)測(cè)力計(jì)測(cè)量得到的實(shí)際合力F,不共線的合力表示由作圖法得到的合力F。
【注意事項(xiàng)】
、挪灰苯右韵鹌l端點(diǎn)為結(jié)點(diǎn),可拴一短細(xì)繩連兩細(xì)繩套,以三繩交點(diǎn)為結(jié)點(diǎn),應(yīng)使結(jié)點(diǎn)小些,以便準(zhǔn)確地記錄結(jié)點(diǎn)O的位置。
、剖褂脧椈沙忧,應(yīng)先調(diào)節(jié)零刻度,使用時(shí)不超量程,拉彈簧秤時(shí),應(yīng)使彈簧秤與木板平行。
、窃谕淮螌(shí)驗(yàn)中,橡皮條伸長(zhǎng)時(shí)的結(jié)點(diǎn)位置要相同。
、缺粶y(cè)力的方向應(yīng)與彈簧測(cè)力計(jì)軸線方向一致,拉動(dòng)時(shí)彈簧不可與外殼相碰或摩擦。
、勺x數(shù)時(shí)應(yīng)正對(duì)、平視刻度。
⑹兩拉力F1和F2夾角不宜過(guò)小,作力的圖示,標(biāo)度要一致。
交流與思考:如何設(shè)計(jì)實(shí)驗(yàn)探究?jī)闪狭﹄S角度的變化規(guī)律?如何觀察合力的變化規(guī)律?
提示:保持兩力的大小不變,改變兩力之間的夾角,使兩力的合力發(fā)生變化,可以通過(guò)觀察結(jié)點(diǎn)的位置變化,判斷合力大小的變化情況,結(jié)點(diǎn)離固定點(diǎn)越遠(yuǎn),說(shuō)明兩力的合力越大。
【正確使用彈簧秤】
、艔椈沙拥倪x取方法是:將兩只彈簧秤調(diào)零后互鉤水平對(duì)拉,若兩只彈簧在對(duì)拉過(guò)程中,讀數(shù)相同,則可選;若讀數(shù)不同,應(yīng)另?yè)Q彈簧,直至相同為止。
、茝椈沙硬荒茉诔鏊臏y(cè)量范圍的情況下使用。
、鞘褂们耙獧z查指針是否指在零刻度線上,否則應(yīng)校正零位(無(wú)法校正的要記錄下零誤差)。
⑷被測(cè)力的方向應(yīng)與彈簧秤軸線方向一致,拉動(dòng)時(shí)彈簧不可與外殼相碰或摩擦。
、勺x數(shù)時(shí)應(yīng)正對(duì)、平視刻度。
平行四邊形教案 篇2
教學(xué)目標(biāo)
1、知識(shí)目標(biāo)
。1)使學(xué)生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。
(2)掌握平行四邊形的性質(zhì)定理1、2,并能運(yùn)用這些知識(shí)進(jìn)行有關(guān)的證明或計(jì)算.
2、能力目標(biāo)
。1)通過(guò)啟發(fā)、引導(dǎo),讓學(xué)生猜想結(jié)論,培養(yǎng)學(xué)生的觀察能力和猜想能力。
。2)驗(yàn)證猜想結(jié)論,培養(yǎng)學(xué)生的論證和邏輯思維能力。
。3)通過(guò)開(kāi)放式教學(xué),培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和實(shí)踐能力。
3、非智力目標(biāo)
滲透從具體到抽象、化未知為已知的數(shù)學(xué)思想及事物之間相互轉(zhuǎn)化的辯證唯物主義觀點(diǎn).
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):平行四邊形的概念及其性質(zhì).
難點(diǎn):正確理解兩條平行線間的距離的概念和性質(zhì)定理2的推論。
平行四邊形的概念及性質(zhì)的靈活運(yùn)用
教學(xué)方法:講解、分析、轉(zhuǎn)化
教學(xué)過(guò)程設(shè)計(jì)
一、利用分類(lèi)、特殊化的方法引出平行四邊形的概念
1.復(fù)習(xí)四邊形的知識(shí).
(1)引導(dǎo)學(xué)生畫(huà)任意凸四邊形,指出它的主要元素——頂點(diǎn)、邊、角、對(duì)角線的性質(zhì),強(qiáng)調(diào)對(duì)角線的作用:將四邊形分割化歸為三角形來(lái)研究.
(2)將四邊形的邊角按位置關(guān)系分為兩類(lèi):
教學(xué)時(shí)應(yīng)結(jié)合圖形,讓學(xué)生識(shí)別清楚,并注意與三角形中角的對(duì)邊、邊的對(duì)角及第一章中的鄰角相區(qū)別.
2.教師提問(wèn):四邊形中的兩組對(duì)邊按位置關(guān)系分為幾種情況?
引導(dǎo)學(xué)生畫(huà)圖回答,并出示投影片顯示四邊形與特殊四邊形的關(guān)系,如圖4-11.
3.對(duì)比引出平行四邊形的概念.
。1)引導(dǎo)學(xué)生根據(jù)圖4-11,敘述平行四邊形的概念,引出課題.
。2)注意它與梯形的對(duì)比,及它與四邊形的特殊與一般的關(guān)系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(zhì)(共性).同時(shí)它還具有一般四邊形不具備的特殊性質(zhì)(個(gè)性).
(3)強(qiáng)調(diào)定義既是平行四邊形的一個(gè)判定方法,同時(shí)又是平行四邊形的一個(gè)性質(zhì).
。4)介紹平行四邊形的符號(hào)表示及定義的使用方法:如圖4-12.
、佟逜BCD,∴AD∥BC,AB∥CD.(平行四邊形的定義)
、凇逜D∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)
練習(xí)1(投影)
如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個(gè),它們是__.
二、探索平行四邊形的性質(zhì)并證明
1.探索性質(zhì).
啟發(fā)學(xué)生從平行四邊形的主要元素——邊、角、對(duì)角線的位置關(guān)系及數(shù)量關(guān)系入手,來(lái)觀察、探索、猜想平行四邊形的特有的性質(zhì)如下:
。3)對(duì)角線
、輰(duì)角線互相平分(性質(zhì)定理3)
教師注意解釋并強(qiáng)調(diào)對(duì)角線互相平分的含義及表示方法.
2.利用化歸的方法對(duì)性質(zhì)逐一進(jìn)行證明.
(1)由平行四邊形的定義及平行線的性質(zhì)很快證出性質(zhì)①,④,③.
。2)啟發(fā)學(xué)生添加一條或兩條對(duì)角線,將四邊形分割、化歸為三角形;利用全等三角形的知識(shí)證出性質(zhì)②,⑤.
。3)寫(xiě)出證明過(guò)程.
3.關(guān)于“兩條平行線間的平行線段和距離”的教學(xué).
(1)利用性質(zhì)定理2
導(dǎo)出推論:夾在兩條平行線間的平行線段相等.
、偬釂(wèn):在圖4-14中,l1∥l2,AB∥CD,那么AB,CD的數(shù)量有何關(guān)系?引導(dǎo)學(xué)生根據(jù)平行四邊形的定義和性質(zhì)進(jìn)行證明.
②引導(dǎo)學(xué)生用語(yǔ)言簡(jiǎn)練地?cái)⑹鰣D4-14所反映的幾何命題,并強(qiáng)調(diào)它的作用.證題時(shí)可節(jié)省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.
③強(qiáng)調(diào)推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習(xí).
練習(xí)2
(投影)如圖4-15,判斷下列幾組圖形能否體現(xiàn)推論所代表的含義.
。2)根據(jù)圖4-15(d)引出兩條平行線的距離的概念,并通過(guò)練習(xí)區(qū)別三個(gè)距離.
練習(xí)3
在圖4-15(d)中,
、冱c(diǎn)A與點(diǎn)C的距離是線段__的長(zhǎng);
、邳c(diǎn)A到直線l2的距離是線段__的長(zhǎng);
、蹆蓷l平行線l1與l2的距離是線段__或__的長(zhǎng);
、苡赏普摽傻茫簝蓷l平行線間的距離__.
三、平行四邊形的定義及性質(zhì)的應(yīng)用
1.計(jì)算.
例1填空.
(1)在ABCD中,AB=a,BC=b,∠A=50°,則ABCD的周長(zhǎng)為_(kāi)_,∠B=__,∠C=__,∠D=__;
。2)在ABCD中:①∠A∶∠B=5∶4,則∠A=__;②∠A+∠C=200°,則∠A=___,∠B=__;
。3)已知平行四邊形周長(zhǎng)為54,兩鄰邊之比為4∶5,則這兩邊長(zhǎng)度分別為_(kāi)_;
(4)已知ABCD對(duì)角線交點(diǎn)為O,AC=24mm,BD=26mm,①若AD=22mm,則△OBC周長(zhǎng)為_(kāi)_;②若AB⊥AC,則△OBC比△OAB的周長(zhǎng)大___;
(5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
說(shuō)明:通過(guò)此題讓學(xué)生熟悉平行四邊形的性質(zhì),會(huì)用它及方程的思想進(jìn)行計(jì)算,并復(fù)習(xí)平行四邊形的面積公式.
2.證明.
例2 已知:如圖4-16,ABCD中,E,F(xiàn)分別為BC,AD上的點(diǎn),AE∥CF.求證(1)BE=DF;(2)EF過(guò)BD的.中點(diǎn).
分析:
。1)盡量利用平行四邊形的定義和性質(zhì),避免證三角形全等.
(2)考慮特殊化情形.在ABCD中,若E,F(xiàn)在BC,AD上運(yùn)動(dòng)到如下位置:AE⊥BC于E,CF⊥AD于F,求證BE=DF.在題目的變化與聯(lián)系中靈活選用性質(zhì)來(lái)解題.
例3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點(diǎn)分別是△B′C′A′各邊的中點(diǎn).
著重引導(dǎo)學(xué)生先分解基本圖形,圖中有3個(gè)平行四邊形:C′BCA,ABCB′,ABA′C,分別利用對(duì)角相等和對(duì)邊相等的性質(zhì)使問(wèn)題得到證明.對(duì)于第(2)問(wèn)也可用“夾在兩條平行線間的平行線段相等”來(lái)證明.
例4 已知:如圖4-18(a),ABCD的對(duì)角線AC,BD相交于點(diǎn)O,EF過(guò)點(diǎn)O與AB,CD分別相交于點(diǎn)E,F(xiàn).求證:OE=OF,AE=CF,BE=DF.
分析:
(1)引導(dǎo)學(xué)生證明以O(shè)E,OF為邊的兩個(gè)三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.
(2)根據(jù)學(xué)生實(shí)際,對(duì)圖4-18(a)可作適當(dāng)引申,如圖4-18(b),(c),(d),并歸納結(jié)論如下:過(guò)平行四邊形對(duì)角線的交點(diǎn)作直線交對(duì)邊或?qū)叺难娱L(zhǎng)線,所得對(duì)應(yīng)線段相等.
(3)圖4-18是一組重要的基本圖形,熟悉它的性質(zhì)對(duì)解答復(fù)雜問(wèn)題是很有幫助的.
3.供選用例題.
。1)從平行四邊形的一個(gè)銳角頂點(diǎn)作平行四邊形的兩條高線.如果這兩條高線的夾角為135°,則這個(gè)平行四邊形相鄰兩內(nèi)角的度數(shù)為_(kāi)_;若高線分別為1cm和2cm,則平行四邊形的周長(zhǎng)為_(kāi)_,面積為_(kāi)__;若兩條高線夾角為120°呢?
。2)如圖4-19,在△ABC中,AD平分∠BAC,過(guò)D作DE∥AC交AB于E,過(guò)E作EF∥DC交AC于F.求證:AE=FC.
。3)如圖4-20,在ABCD中,AD=2AB,將AB向兩方延長(zhǎng),使AE=BF=AB.求證:EC⊥FD.
四、師生共同小結(jié)
1.平行四邊形與四邊形的關(guān)系.
2.學(xué)習(xí)了平行四邊形哪些方面的性質(zhì)?
3.兩條平行線的距離是怎樣定義的?有什么性質(zhì)?
五、作業(yè)
課本第143頁(yè)第2,3,4,5,6題.
課堂教學(xué)設(shè)計(jì)說(shuō)明
本教學(xué)設(shè)計(jì)需2課時(shí)完成.
這節(jié)內(nèi)容分2課時(shí).第1課時(shí)在復(fù)習(xí)四邊形的有關(guān)知識(shí)的基礎(chǔ)上,用對(duì)比的方式引入平行四邊形的概念,充分體現(xiàn)了平行四邊形在四邊形體系中的地位,然后,教師應(yīng)啟發(fā)學(xué)生從邊、角、對(duì)角線三個(gè)方面探索平行四邊形的性質(zhì),使知識(shí)更加系統(tǒng),更符合學(xué)生的認(rèn)知規(guī)律,而且突出了第1課時(shí)的重點(diǎn),同時(shí)更能培養(yǎng)學(xué)生主動(dòng)探求知識(shí)的精神和思維的條理性.第2課時(shí)重點(diǎn)應(yīng)用平行四邊形的定義、性質(zhì)進(jìn)行計(jì)算和證明,教師注意讓學(xué)生鞏固基礎(chǔ)知識(shí)和基本技能,加強(qiáng)對(duì)解題思路的分析,解題思想方法的概括、指導(dǎo)和結(jié)論的升華.
平行四邊形及其性質(zhì)
教學(xué)目標(biāo)
1、知識(shí)目標(biāo)
。1)使學(xué)生掌握平行四邊形的概念,理解兩條平行線間的距離的概念。
。2)掌握平行四邊形的性質(zhì)定理1、2,并能運(yùn)用這些知識(shí)進(jìn)行有關(guān)的證明或計(jì)算.
2、能力目標(biāo)
。1)通過(guò)啟發(fā)、引導(dǎo),讓學(xué)生猜想結(jié)論,培養(yǎng)學(xué)生的觀察能力和猜想能力。
(2)驗(yàn)證猜想結(jié)論,培養(yǎng)學(xué)生的論證和邏輯思維能力。
。3)通過(guò)開(kāi)放式教學(xué),培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和實(shí)踐能力。
3、非智力目標(biāo)
滲透從具體到抽象、化未知為已知的數(shù)學(xué)思想及事物之間相互轉(zhuǎn)化的辯證唯物主義觀點(diǎn).
教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):平行四邊形的概念及其性質(zhì).
難點(diǎn):正確理解兩條平行線間的距離的概念和性質(zhì)定理2的推論。
平行四邊形的概念及性質(zhì)的靈活運(yùn)用
教學(xué)方法:講解、分析、轉(zhuǎn)化
教學(xué)過(guò)程設(shè)計(jì)
一、利用分類(lèi)、特殊化的方法引出平行四邊形的概念
1.復(fù)習(xí)四邊形的知識(shí).
。1)引導(dǎo)學(xué)生畫(huà)任意凸四邊形,指出它的主要元素——頂點(diǎn)、邊、角、對(duì)角線的性質(zhì),強(qiáng)調(diào)對(duì)角線的作用:將四邊形分割化歸為三角形來(lái)研究.
。2)將四邊形的邊角按位置關(guān)系分為兩類(lèi):
教學(xué)時(shí)應(yīng)結(jié)合圖形,讓學(xué)生識(shí)別清楚,并注意與三角形中角的對(duì)邊、邊的對(duì)角及第一章中的鄰角相區(qū)別.
2.教師提問(wèn):四邊形中的兩組對(duì)邊按位置關(guān)系分為幾種情況?
引導(dǎo)學(xué)生畫(huà)圖回答,并出示投影片顯示四邊形與特殊四邊形的關(guān)系,如圖4-11.
3.對(duì)比引出平行四邊形的概念.
。1)引導(dǎo)學(xué)生根據(jù)圖4-11,敘述平行四邊形的概念,引出課題.
。2)注意它與梯形的對(duì)比,及它與四邊形的特殊與一般的關(guān)系:平行四邊形是特殊的四邊形,因此它具有四邊形的一切性質(zhì)(共性).同時(shí)它還具有一般四邊形不具備的特殊性質(zhì)(個(gè)性).
(3)強(qiáng)調(diào)定義既是平行四邊形的一個(gè)判定方法,同時(shí)又是平行四邊形的一個(gè)性質(zhì).
。4)介紹平行四邊形的符號(hào)表示及定義的使用方法:如圖4-12.
、佟逜BCD,∴AD∥BC,AB∥CD.(平行四邊形的定義)
、凇逜D∥BC,AB∥CD,∴四邊形ABCD是平行四邊形.(平行四邊形的定義)
練習(xí)1(投影)
如圖4-13,DC∥EF∥AB,DA∥GH∥CB,圖中的平行四邊形共有__個(gè),它們是__.
二、探索平行四邊形的性質(zhì)并證明
1.探索性質(zhì).
啟發(fā)學(xué)生從平行四邊形的主要元素——邊、角、對(duì)角線的位置關(guān)系及數(shù)量關(guān)系入手,來(lái)觀察、探索、猜想平行四邊形的特有的性質(zhì)如下:
。3)對(duì)角線
⑤對(duì)角線互相平分(性質(zhì)定理3)
教師注意解釋并強(qiáng)調(diào)對(duì)角線互相平分的含義及表示方法.
2.利用化歸的方法對(duì)性質(zhì)逐一進(jìn)行證明.
。1)由平行四邊形的定義及平行線的性質(zhì)很快證出性質(zhì)①,④,③.
。2)啟發(fā)學(xué)生添加一條或兩條對(duì)角線,將四邊形分割、化歸為三角形;利用全等三角形的知識(shí)證出性質(zhì)②,⑤.
。3)寫(xiě)出證明過(guò)程.
3.關(guān)于“兩條平行線間的平行線段和距離”的教學(xué).
。1)利用性質(zhì)定理2
導(dǎo)出推論:夾在兩條平行線間的平行線段相等.
①提問(wèn):在圖4-14中,l1∥l2,AB∥CD,那么AB,CD的數(shù)量有何關(guān)系?引導(dǎo)學(xué)生根據(jù)平行四邊形的定義和性質(zhì)進(jìn)行證明.
、谝龑(dǎo)學(xué)生用語(yǔ)言簡(jiǎn)練地?cái)⑹鰣D4-14所反映的幾何命題,并強(qiáng)調(diào)它的作用.證題時(shí)可節(jié)省步驟,省掉判定平行四邊形這一步,直接得到夾在兩條平行線間的平行線段相等.
③強(qiáng)調(diào)推論中的條件:“夾”、“平行線間”、“平行線段”的含義和重要性,并做一組辨析練習(xí).
練習(xí)2
。ㄍ队埃┤鐖D4-15,判斷下列幾組圖形能否體現(xiàn)推論所代表的含義.
。2)根據(jù)圖4-15(d)引出兩條平行線的距離的概念,并通過(guò)練習(xí)區(qū)別三個(gè)距離.
練習(xí)3
在圖4-15(d)中,
①點(diǎn)A與點(diǎn)C的距離是線段__的長(zhǎng);
②點(diǎn)A到直線l2的距離是線段__的長(zhǎng);
③兩條平行線l1與l2的距離是線段__或__的長(zhǎng);
、苡赏普摽傻茫簝蓷l平行線間的距離__.
三、平行四邊形的定義及性質(zhì)的應(yīng)用
1.計(jì)算.
例1填空.
。1)在ABCD中,AB=a,BC=b,∠A=50°,則ABCD的周長(zhǎng)為_(kāi)_,∠B=__,∠C=__,∠D=__;
。2)在ABCD中:①∠A∶∠B=5∶4,則∠A=__;②∠A+∠C=200°,則∠A=___,∠B=__;
(3)已知平行四邊形周長(zhǎng)為54,兩鄰邊之比為4∶5,則這兩邊長(zhǎng)度分別為_(kāi)_;
。4)已知ABCD對(duì)角線交點(diǎn)為O,AC=24mm,BD=26mm,①若AD=22mm,則△OBC周長(zhǎng)為_(kāi)_;②若AB⊥AC,則△OBC比△OAB的周長(zhǎng)大___;
。5)在ABCD中,AB=8cm,BC=10cm,∠B=30°,SABCD=__;
說(shuō)明:通過(guò)此題讓學(xué)生熟悉平行四邊形的性質(zhì),會(huì)用它及方程的思想進(jìn)行計(jì)算,并復(fù)習(xí)平行四邊形的面積公式.
2.證明.
例2 已知:如圖4-16,ABCD中,E,F(xiàn)分別為BC,AD上的點(diǎn),AE∥CF.求證(1)BE=DF;(2)EF過(guò)BD的中點(diǎn).
分析:
。1)盡量利用平行四邊形的定義和性質(zhì),避免證三角形全等.
。2)考慮特殊化情形.在ABCD中,若E,F(xiàn)在BC,AD上運(yùn)動(dòng)到如下位置:AE⊥BC于E,CF⊥AD于F,求證BE=DF.在題目的變化與聯(lián)系中靈活選用性質(zhì)來(lái)解題.
例3已知:如圖4-17,A′B′∥BA,B′C′∥CB,C′A′∥AC.求證:(1)∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′;(2)△ABC的頂點(diǎn)分別是△B′C′A′各邊的中點(diǎn).
著重引導(dǎo)學(xué)生先分解基本圖形,圖中有3個(gè)平行四邊形:C′BCA,ABCB′,ABA′C,分別利用對(duì)角相等和對(duì)邊相等的性質(zhì)使問(wèn)題得到證明.對(duì)于第(2)問(wèn)也可用“夾在兩條平行線間的平行線段相等”來(lái)證明.
例4 已知:如圖4-18(a),ABCD的對(duì)角線AC,BD相交于點(diǎn)O,EF過(guò)點(diǎn)O與AB,CD分別相交于點(diǎn)E,F(xiàn).求證:OE=OF,AE=CF,BE=DF.
分析:
。1)引導(dǎo)學(xué)生證明以O(shè)E,OF為邊的兩個(gè)三角形全等,如證△AOE≌△COF或證△BOE≌△DOF.
。2)根據(jù)學(xué)生實(shí)際,對(duì)圖4-18(a)可作適當(dāng)引申,如圖4-18(b),(c),(d),并歸納結(jié)論如下:過(guò)平行四邊形對(duì)角線的交點(diǎn)作直線交對(duì)邊或?qū)叺难娱L(zhǎng)線,所得對(duì)應(yīng)線段相等.
(3)圖4-18是一組重要的基本圖形,熟悉它的性質(zhì)對(duì)解答復(fù)雜問(wèn)題是很有幫助的.
3.供選用例題.
。1)從平行四邊形的一個(gè)銳角頂點(diǎn)作平行四邊形的兩條高線.如果這兩條高線的夾角為135°,則這個(gè)平行四邊形相鄰兩內(nèi)角的度數(shù)為_(kāi)_;若高線分別為1cm和2cm,則平行四邊形的周長(zhǎng)為_(kāi)_,面積為_(kāi)__;若兩條高線夾角為120°呢?
(2)如圖4-19,在△ABC中,AD平分∠BAC,過(guò)D作DE∥AC交AB于E,過(guò)E作EF∥DC交AC于F.求證:AE=FC.
。3)如圖4-20,在ABCD中,AD=2AB,將AB向兩方延長(zhǎng),使AE=BF=AB.求證:EC⊥FD.
四、師生共同小結(jié)
1.平行四邊形與四邊形的關(guān)系.
2.學(xué)習(xí)了平行四邊形哪些方面的性質(zhì)?
3.兩條平行線的距離是怎樣定義的?有什么性質(zhì)?
五、作業(yè)
課本第143頁(yè)第2,3,4,5,6題.
課堂教學(xué)設(shè)計(jì)說(shuō)明
本教學(xué)設(shè)計(jì)需2課時(shí)完成.
這節(jié)內(nèi)容分2課時(shí).第1課時(shí)在復(fù)習(xí)四邊形的有關(guān)知識(shí)的基礎(chǔ)上,用對(duì)比的方式引入平行四邊形的概念,充分體現(xiàn)了平行四邊形在四邊形體系中的地位,然后,教師應(yīng)啟發(fā)學(xué)生從邊、角、對(duì)角線三個(gè)方面探索平行四邊形的性質(zhì),使知識(shí)更加系統(tǒng),更符合學(xué)生的認(rèn)知規(guī)律,而且突出了第1課時(shí)的重點(diǎn),同時(shí)更能培養(yǎng)學(xué)生主動(dòng)探求知識(shí)的精神和思維的條理性.第2課時(shí)重點(diǎn)應(yīng)用平行四邊形的定義、性質(zhì)進(jìn)行計(jì)算和證明,教師注意讓學(xué)生鞏固基礎(chǔ)知識(shí)和基本技能,加強(qiáng)對(duì)解題思路的分析,解題思想方法的概括、指導(dǎo)和結(jié)論的升華.
平行四邊形教案 篇3
教學(xué)內(nèi)容:
義務(wù)教育六年制小學(xué)《數(shù)學(xué)》第九冊(cè)P64-P66
教學(xué)目的:
1、讓學(xué)生知道平行四邊形面積公式的推導(dǎo)過(guò)程,掌握平行四邊形面積的計(jì)算公式,并能應(yīng)用公式正確地計(jì)算平行四邊形面積,數(shù)學(xué)教案-平行四邊形面積計(jì)算。
2、通過(guò)操作、觀察與比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運(yùn)用轉(zhuǎn)化的思考方法解決問(wèn)題的能力。
3、使學(xué)生初步感受到事物是相互聯(lián)系的,在一定條件下可以相互轉(zhuǎn)化。
4、培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。
教學(xué)重點(diǎn):
掌握平行四邊形面積公式。
教學(xué)難點(diǎn):
平行四邊形面積公式的推導(dǎo)過(guò)程。
教具、學(xué)具準(zhǔn)備:
1、多媒體計(jì)算機(jī)及課件;
2、投影儀;
3、硬紙板做成的可拉動(dòng)的長(zhǎng)方形框架;
4、每個(gè)學(xué)生5張平行四邊形硬紙片及剪刀一把。
教學(xué)過(guò)程:
一、復(fù)習(xí)導(dǎo)入:
1、我們認(rèn)識(shí)的平面幾何圖形有哪些呢?(微機(jī)出示,圖形略)
2、在這幾個(gè)圖形中你們會(huì)求哪幾個(gè)的面積呢?(微機(jī)出示長(zhǎng)方形和正方形的面積公式)
3、大家想不想知道其他幾個(gè)圖形的面積怎么求呢?我們這個(gè)單元就來(lái)學(xué)習(xí)“多邊形面積的計(jì)算”。
二、質(zhì)疑引新:
1、老師知道同學(xué)們都很喜歡流氓兔,今天流氓兔遇到了一個(gè)難題,我們一起來(lái)幫它解決好不好?
2、微機(jī)顯示動(dòng)畫(huà)故事:有一天,流氓兔在跑步的時(shí)候,遇到了一個(gè)長(zhǎng)方形框架,它不小心踹了一腳,把長(zhǎng)方形變成了平行四邊形,流氓兔很奇怪:形狀改變了,面積改變了嗎?
3、演示教具:將硬紙板做成的長(zhǎng)方形框架,拉動(dòng)其一角,變?yōu)槠叫兴倪呅巍?/p>
4、解決這個(gè)問(wèn)題最好的辦法就是將兩個(gè)圖形的面積都求出來(lái)進(jìn)行比較,長(zhǎng)方形的面積我們會(huì)求了,平行四邊形的面積要怎么求呢?這節(jié)可我們就一起來(lái)學(xué)習(xí)平行四邊形面積的計(jì)算。(板書(shū)課題:平行四邊形面積的計(jì)算)
三、引導(dǎo)探求:
。ㄒ唬、復(fù)習(xí)鋪墊:
1、什么圖形是平行四邊形呢?
2、拿出一個(gè)準(zhǔn)備好的平行四邊形,找找它的底和高,并把高畫(huà)下來(lái),比比看誰(shuí)畫(huà)得多。
3、微機(jī)顯示并小結(jié):平行四邊形可以作無(wú)數(shù)條高,以不同的邊為底對(duì)應(yīng)的高是不同的。
(二)、推導(dǎo)公式:
1、小小魔術(shù)師:我們現(xiàn)在來(lái)做一個(gè)變一變的小游戲(微機(jī)顯示一個(gè)不規(guī)則圖形),我們可以直接用所學(xué)過(guò)的求面積公式來(lái)求它的面積嗎?
2、能不能把它轉(zhuǎn)化成我們學(xué)過(guò)的圖形呢?(用割補(bǔ)法轉(zhuǎn)化為長(zhǎng)方形)
3、能不能用同樣的方法把一個(gè)平行四邊形轉(zhuǎn)化成長(zhǎng)方形呢?請(qǐng)同學(xué)們拿出準(zhǔn)備好的多個(gè)平行四邊形紙片及剪刀,自己動(dòng)手,運(yùn)用所學(xué)過(guò)的割補(bǔ)法將平行四邊形轉(zhuǎn)化為長(zhǎng)方形。
4、學(xué)生實(shí)驗(yàn)操作,教師巡視指導(dǎo)。
5、學(xué)生交流實(shí)驗(yàn)情況:
、拧⒄l(shuí)愿意把你的轉(zhuǎn)化方法說(shuō)給大家聽(tīng)呢?請(qǐng)上臺(tái)來(lái)交流!(用投影儀演示剪拼過(guò)程)
、啤⒂袥](méi)有不同的剪拼方法?(繼續(xù)請(qǐng)同學(xué)演示)。
、、微機(jī)演示各種轉(zhuǎn)化方法。
6、歸納總結(jié)規(guī)律:
沿著平行四邊形的任意一條高剪開(kāi),都可以通過(guò)平移把平行四邊形拼合成一個(gè)長(zhǎng)方形。并引導(dǎo)學(xué)生形成以下概念:
、、平行四邊形剪拼成長(zhǎng)方形后,什么變了?什么沒(méi)變?
、、剪拼成的長(zhǎng)方形的長(zhǎng)與寬分別與平行四邊形的底和高有什么關(guān)系?
、、剪樣成的圖形面積怎樣計(jì)算?得出:
因?yàn)椋浩叫兴倪呅蔚拿娣e=長(zhǎng)方形的面積=長(zhǎng)×寬=底×高
所以:平行四邊形的面積=底×高
。ò鍟(shū)平行四邊形面積推導(dǎo)過(guò)程)
7、文字公式不方便,我們一起來(lái)學(xué)習(xí)用字母公式表示,如果用S表示平行四邊形的面積,用a表示平行四邊形的底,用h表示平行四邊形的高,那么S=a×h(板書(shū))。同時(shí)強(qiáng)調(diào):在含有字母的式子中,字母和字母之間的乘號(hào)可以記作".",也可以省略不寫(xiě),所以平行四邊形的面積公式還可以記作S=a.h或S=ah(板書(shū))。
8、讓學(xué)生閉上眼睛,在輕柔的音樂(lè)中回憶平行四邊形面積計(jì)算的推導(dǎo)過(guò)程。
四、鞏固練習(xí):
1、剛才我們已經(jīng)推導(dǎo)出了平行四邊形的面積公式,那么,要求平行四邊形的面積,必須要知道哪幾個(gè)條件?(底和高,強(qiáng)調(diào)高是底邊上的高)
2、練習(xí):
⑴、(微機(jī)顯示例一)求平行四邊形的面積
、、判斷題(微機(jī)顯示,強(qiáng)調(diào)高是底邊上的`高)
⑶、比較等底等高的平行四邊形面積的大小(用求面積的公式計(jì)算、比較,得出結(jié)論:等底等高的平行四邊形面積相等)
⑷、思考題:用求面積的公式解決流氓兔的難題(微機(jī)演示,得出結(jié)論:原長(zhǎng)方形與改變后的平行四邊形比較,長(zhǎng)方形的長(zhǎng)等于平行四邊形的底,長(zhǎng)方形的寬不等于平行四邊形的高,所以二者的面積不相等)。
五、問(wèn)答總結(jié):
1、通過(guò)這節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識(shí)?
2、平行四邊形面積的計(jì)算公式是什么?
3、平行四邊形面積公式是如何推導(dǎo)得出的?
六、課后作業(yè):P67 1、2、3、5 《指導(dǎo)叢書(shū)》練習(xí)十六 1
【平行四邊形教案】相關(guān)文章:
平行四邊形教案08-27
《平行四邊形的面積》教案01-02
平行四邊形面積教案02-09
平行四邊形的面積教案01-17
《平行四邊形的面積》教案06-23
平行四邊形的認(rèn)識(shí)教案07-30
平行四邊形面積教案優(yōu)秀05-08
平行四邊形教案四篇05-14