国产精品入口免费视频_亚洲精品美女久久久久99_波多野结衣国产一区二区三区_农村妇女色又黄一级真人片卡

平行四邊形教案

時(shí)間:2024-08-22 10:32:48 教案 我要投稿

精選平行四邊形教案匯總九篇

  作為一名優(yōu)秀的教育工作者,時(shí)常需要編寫(xiě)教案,通過(guò)教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。我們?cè)撛趺慈?xiě)教案呢?下面是小編整理的平行四邊形教案9篇,僅供參考,歡迎大家閱讀。

精選平行四邊形教案匯總九篇

平行四邊形教案 篇1

  教學(xué)內(nèi)容:

  課本第73-74頁(yè)練習(xí)十七第4-9題

  教學(xué)要求:

 。、能比較熟練地運(yùn)用平行四邊形計(jì)算公式,解答有關(guān)的應(yīng)用問(wèn)題。

 。、養(yǎng)成良好的審題習(xí)慣,樹(shù)立責(zé)任感。

  教學(xué)重點(diǎn):

  能比較熟練地運(yùn)用平行四邊形的計(jì)算公式,解答有關(guān)的應(yīng)用題。

  教具準(zhǔn)備:

  口算卡片。

  教學(xué)過(guò)程:

  一、復(fù)習(xí)

 。薄⑵叫兴倪呅蔚拿娣e計(jì)算公式是什么?

 。、口算:

  4.9÷0.75.4+2.64×0.250.87-0.49

  530+2703.5×0.2542-986÷12

  3、求平行四邊形的面積。

  (1)底12米,高是7米;(2)高13分米,底長(zhǎng)6分米;

 。ǎ常┑祝.5厘米,高4厘米;(4)底0.24分米,高0.5分米

 。础⒊鍪菊n題。

  二、新授

 。、補(bǔ)充例題

  一塊平行四邊形的麥地底長(zhǎng)125米,高24米,它的面積是多少平方米?

  (1)獨(dú)立列式后,指名口述,教師板書(shū)。

 。ǎ玻┤绻膯(wèn)題為“每公頃可收小麥6噸,這塊地共可收小麥多少噸?”怎么解答?

  讓學(xué)生議一議,然后自己列式解答,最后評(píng)講。

 。ǎ常┤绻麊(wèn)題改為:“改種花生,一年可收花生900千克,這塊地平均每公頃可收花生多少千克?”又怎么想?

  與上題比較,從數(shù)量關(guān)系上看,什么是相同的'?什么是不同的?

  讓學(xué)生自己列式。

  辨析:老師也列了三個(gè)算式,到底哪個(gè)對(duì)呢?幫個(gè)忙!

 。900×(125×24÷10000)

  B900÷(125×24)

 。900÷(125×24÷10000)

  2、(略)

  三、鞏固練習(xí)

  練習(xí)十七第6、7題

  四、課堂作業(yè)

  練習(xí)十七第8、9題

 、嘤幸粔K平行四邊形的菜地,底是27.6米,高是15米,每平方米收油菜6千克。這塊地收多少千克油菜?

  ⑨有一塊平行四邊形的麥田,底是250米,高是78米,共收小麥13650千克。這塊麥田有多少公頃?平均每公頃收小麥多少公頃?

  板書(shū)設(shè)計(jì):

  平行四邊形面積的計(jì)算

平行四邊形教案 篇2

  教學(xué)內(nèi)容:教科書(shū)第12—13頁(yè)的例1、例2、例3,“試一試”和“練一練”,第14頁(yè)的練習(xí)二。

  教學(xué)目標(biāo):

  1.知識(shí)目標(biāo):使學(xué)生通過(guò)實(shí)際操作和討論思考,探索并掌握平行四邊形的面積公式,并能應(yīng)

  用公式正確計(jì)算平行四邊形的面積。

  2.能力目標(biāo):使學(xué)生經(jīng)歷觀察、操作、測(cè)量、填表、討論、分析、歸納等數(shù)學(xué)活動(dòng)過(guò)程,進(jìn)一步體會(huì)“等積變形”的思想方法。

  3.情感目標(biāo):培養(yǎng)空間觀念,發(fā)展初步的推理能力。

  教學(xué)過(guò)程:

  一、復(fù)習(xí)導(dǎo)入。

  1.說(shuō)出下面每個(gè)圖形的名稱。(電腦出示)

  2.在這幾個(gè)圖形中,你會(huì)求哪些圖形的面積呢?

  3.大家想不想知道平行四邊形的面積怎么求?今天我們一起來(lái)研究“平行四邊形面積的計(jì)算”。(揭示課題)

  二、探究新知。

  1.教學(xué)例1。

  (1)出示例l中的第一組圖形。

  提出要求:這兒有兩個(gè)圖形,這兩個(gè)圖形的面積相等嗎?在小組里說(shuō)一說(shuō)你準(zhǔn)備怎樣比較這兩個(gè)圖形的面積。學(xué)生分組活動(dòng)后組織交流。

  對(duì)學(xué)生的交流作適當(dāng)點(diǎn)評(píng),使學(xué)生明白兩種不同的比較方法都是可以的:即數(shù)方格比較大小或把左邊的圖形轉(zhuǎn)化后與右邊的圖形進(jìn)行比較。

  (2)出示例l中的第二組圖形。

  提出要求:你能用剛才的方法比較這兩個(gè)圖形的`大小嗎?

  學(xué)生分組活動(dòng)后組織交流,在學(xué)生的交流中,教師適當(dāng)強(qiáng)調(diào)“轉(zhuǎn)化”的方法。

  (3)小結(jié):把不熟悉的圖形轉(zhuǎn)化成學(xué)過(guò)的圖形,并用學(xué)過(guò)的知識(shí)解決問(wèn)題,這是數(shù)學(xué)上一種很重要的方法——轉(zhuǎn)化。這種方法在數(shù)學(xué)學(xué)習(xí)中經(jīng)常要用到。

  2.教學(xué)例2。

  (1)出示畫(huà)在方格紙上的平行四邊形。提問(wèn):你能想辦法把圖中的平行四邊形轉(zhuǎn)化成長(zhǎng)方形嗎?

  (2)學(xué)生操作,教師巡視指導(dǎo)。

  (3)學(xué)生交流操作情況。

  提出要求:誰(shuí)愿意把你的轉(zhuǎn)化方法說(shuō)給大家聽(tīng)聽(tīng)?(讓學(xué)生用實(shí)物投影演示剪、拼過(guò)程)

  提問(wèn):有沒(méi)有不同的剪、拼方法? (繼續(xù)請(qǐng)學(xué)生演示)

  教師用課件演示各種轉(zhuǎn)化方法,進(jìn)行小結(jié)。

  (4)討論:剛才大家把平行四邊形轉(zhuǎn)化成長(zhǎng)方形時(shí),都是沿著平行四邊形的一條高剪的。大家為什么要沿著高剪開(kāi)?

  啟發(fā)學(xué)生在討論中理解:沿著高剪開(kāi),能使拼成的圖形出現(xiàn)直角,從而符合長(zhǎng)方形的特征。

  (5)小結(jié):沿著平行四邊形的任意一條高剪開(kāi),再通過(guò)平移,都可以把平行四邊形轉(zhuǎn)化成一個(gè)長(zhǎng)方形。

  3.教學(xué)例3。

  (1)提問(wèn):是不是任意一個(gè)平行四邊形都能轉(zhuǎn)化成長(zhǎng)方形?平行四邊形轉(zhuǎn)化成長(zhǎng)方形后,它的面積大小有沒(méi)有變?與原來(lái)的平行四邊形之間有什么聯(lián)系?

  (2)操作:請(qǐng)大家從教科書(shū)第123頁(yè)上選一個(gè)平行四邊形剪下來(lái),先把它轉(zhuǎn)化成長(zhǎng)方形,并求出面積,再填寫(xiě)下表:

  轉(zhuǎn)化成的長(zhǎng)方形 平行四邊形

  長(zhǎng)(cm) 寬(cm) 面積(c㎡) 底(cm) 高(cm) 面積(c㎡)

  (3)小組討論:

 、俎D(zhuǎn)化成的長(zhǎng)方形與平行四邊形面積相等嗎?

 、陂L(zhǎng)方形的長(zhǎng)和寬與平行四邊形的底和高有什么關(guān)系?

 、鄹鶕(jù),長(zhǎng)方形的面積公式,怎樣求平行四邊形的面積?

  (4)反饋、交流,抽象出面積公式。

  根據(jù)學(xué)生的討論進(jìn)行如.下的板書(shū):

  因?yàn)?長(zhǎng)方形的面積二長(zhǎng)×寬

  所以 平行四邊形的面積二底×高

  (5)用字母表示公式。

  如果用S表示平行四邊形的面積,用a和h分別表示平行四邊形的底和高,那么你能用字母寫(xiě)出平行四邊形的面積公式嗎?

  結(jié)合學(xué)生的回答,板書(shū):

  S=ah

  (6)指導(dǎo)完成“試一試”。

  先讓學(xué)生根據(jù)題意獨(dú)立解答,再通過(guò)指名板演和評(píng)點(diǎn),明確應(yīng)用公式求平行四邊形面積一般要有兩個(gè)條件,即底和高。

  三、鞏固深化。

  1.指導(dǎo)完成“練一練”。先讓學(xué)生獨(dú)立計(jì)算,再讓學(xué)生說(shuō)說(shuō)每個(gè)平行四邊形的底和高分別是多少,計(jì)算時(shí)應(yīng)用了什么公式。

  2.指導(dǎo)完成練習(xí)二第1題。

  (1)明確要求,鼓勵(lì)學(xué)生嘗試操作。

  (2)討論:長(zhǎng)方形的長(zhǎng)、寬、面積各是多少?要使畫(huà)出的平行四邊形面積與長(zhǎng)方形相等,它的底和高可以分別是多少?

  (3)學(xué)生繼續(xù)操作后展示作品。引導(dǎo)學(xué)生對(duì)展示的平行四邊形進(jìn)行判斷,是否符合題目的要求。

  3.指導(dǎo)完成練習(xí)二第2題。

  先讓學(xué)生指出每個(gè)平行四邊形的底和高,再讓學(xué)生各自測(cè)量計(jì)算。

  提醒學(xué)生:測(cè)量的結(jié)果取整厘米數(shù)。

  4.指導(dǎo)完成練習(xí)二第3、4兩題。

  先讓學(xué)生獨(dú)立解答,再通過(guò)交流說(shuō)說(shuō)自己解決問(wèn)題的思路。

  5.指導(dǎo)完成練習(xí)二第5題。

  (1)同桌兩人分別按要求做出長(zhǎng)12厘米,寬7厘米的長(zhǎng)方形。一個(gè)長(zhǎng)方形不動(dòng),另一個(gè)長(zhǎng)方形拉成平行四邊形,平放在桌上。

  (2)指導(dǎo)觀察、思考。

  要求學(xué)生認(rèn)真觀察做成的長(zhǎng)方形和用長(zhǎng)方形拉成的平行四邊形,想一想,它們的周長(zhǎng)相等嗎?為什么?面積呢?

  (3)指導(dǎo)測(cè)量、計(jì)算,驗(yàn)證猜想。

  (4)連續(xù)拉動(dòng)長(zhǎng)方形,啟發(fā)思考面積的變化有什么特點(diǎn)。

  四、全課小結(jié)。

  通過(guò)今天的學(xué)習(xí)活動(dòng),你學(xué)會(huì)了什么?有哪些收獲?

  教學(xué)后記

  通過(guò)平移轉(zhuǎn)化成長(zhǎng)方形計(jì)算面積, 使學(xué)生了解用數(shù)方格方法計(jì)算面積時(shí)不滿整格的都按半格計(jì)算,同時(shí)初步學(xué)會(huì)用這方法估計(jì)并計(jì)算不規(guī)則物體表面的面積。 使學(xué)生體會(huì)平移后圖形的面積不變,感受轉(zhuǎn)化的策略。體會(huì)平移后圖形的面積不變。

平行四邊形教案 篇3

  (一)教學(xué)目標(biāo)

  1.使學(xué)生理解垂直與平行的概念,會(huì)用直尺、三角尺畫(huà)垂線和平行線。

  2.使學(xué)生掌握平行四邊形和梯形的特征。

  3.通過(guò)多種活動(dòng),使學(xué)生逐步形成空間觀念。

  (二)教材說(shuō)明和教學(xué)建議 教材說(shuō)明

  本單元是在學(xué)生學(xué)習(xí)了角的度量的基礎(chǔ)上教學(xué)的,內(nèi)容包括:同一平面內(nèi)兩條直線的特殊位置關(guān)系,即垂直與平行;平行四邊形和梯形的認(rèn)識(shí)。學(xué)生在前面已經(jīng)學(xué)習(xí)了有關(guān)四邊形的知識(shí),對(duì)平行四邊形也有了初步的認(rèn)識(shí),這里著重給出的是平行四邊形的特征以及與正方形、長(zhǎng)方形的關(guān)系。梯形在這里是第一次正式出現(xiàn),教材除教學(xué)梯形的特征外,還注意說(shuō)明與平行四邊形的聯(lián)系和區(qū)別。

  例題

  具體內(nèi)容及要求

  垂直與平行

  例1

  認(rèn)識(shí)同一平面內(nèi)兩條直線的特殊位置關(guān)系:平行和垂直。

  例2

  學(xué)習(xí)畫(huà)垂線,認(rèn)識(shí)“點(diǎn)到直線的'距離”。

  例3

  學(xué)習(xí)畫(huà)平行線,理解“平行線之間的距離處處相等”。

  平行四邊形和梯形

  例1

  把四邊形分類,概括出平行四邊形和梯形的特征,探討平行四邊形和長(zhǎng)方形、正方形的關(guān)系。

  例2

  認(rèn)識(shí)平行四邊形的不穩(wěn)定性,認(rèn)識(shí)平行四邊形的底和高,及梯形的的各部分名稱。

  學(xué)習(xí)畫(huà)高。

  教學(xué)建議

  1.關(guān)注學(xué)生已有的生活經(jīng)驗(yàn)和知識(shí)基礎(chǔ),把握教學(xué)的起點(diǎn)和難點(diǎn)。

  教學(xué)的任務(wù)是解決學(xué)生現(xiàn)有的認(rèn)識(shí)水平與教育要求之間的矛盾,為學(xué)習(xí)而設(shè)計(jì)教學(xué),是教學(xué)設(shè)計(jì)的出發(fā)點(diǎn),也是歸宿。這一單元中涉及的知識(shí)點(diǎn):平行與垂直,平行四邊形與梯形等,一方面這些幾何圖形在日常生活中應(yīng)用廣泛,學(xué)生頭腦中已經(jīng)積累了許多表象;另一方面,經(jīng)過(guò)三年的數(shù)學(xué)學(xué)習(xí),也具備了一定的知識(shí)基礎(chǔ)。這些都是影響學(xué)生學(xué)習(xí)新知最重要的因素。為此,教師必須關(guān)注學(xué)生已有的生活經(jīng)驗(yàn)和知識(shí)基礎(chǔ),從學(xué)生出發(fā),把握教學(xué)的起點(diǎn)和難點(diǎn),根據(jù)學(xué)生的實(shí)際情況,增加或補(bǔ)充一些內(nèi)容。

  2.理清知識(shí)之間的內(nèi)在聯(lián)系,突出教學(xué)的重點(diǎn)。

  由于數(shù)學(xué)知識(shí)的系統(tǒng)性和嚴(yán)密的邏輯性,決定了舊知識(shí)中孕育著新內(nèi)容,新知識(shí)又是原有知識(shí)的擴(kuò)展。教學(xué)時(shí),要善于理清知識(shí)間的聯(lián)系,根據(jù)教學(xué)目標(biāo)來(lái)確定內(nèi)容的容量、密度和教學(xué)的重點(diǎn),有機(jī)地聯(lián)系單元、全冊(cè),乃至整個(gè)年級(jí)、整個(gè)學(xué)段的教學(xué)內(nèi)容加以研究。如果把“平行與垂直”這一內(nèi)容放到整個(gè)教材體系中,就不難發(fā)現(xiàn)它的學(xué)習(xí)既需要直線及角的知識(shí)做基礎(chǔ),同時(shí)又是認(rèn)識(shí)平行四邊形和梯形的基礎(chǔ)。

  3.注重學(xué)用結(jié)合,就地取材,充實(shí)教材內(nèi)容。

  盡管教材在素材的選材上盡可能地提供一些現(xiàn)實(shí)背景,設(shè)計(jì)了一些學(xué)以致用的習(xí)題,如借助于運(yùn)動(dòng)場(chǎng)景里的一些活動(dòng)器材引出垂直與平行的內(nèi)容,要求學(xué)生思考和討論怎樣測(cè)定立定跳遠(yuǎn)的成績(jī)、怎樣修路最近等。但由于教材的容量有限,還需要教師在教學(xué)過(guò)程中做必要的充實(shí)和拓展,使學(xué)生理解和認(rèn)識(shí)數(shù)學(xué)知識(shí)的發(fā)生和發(fā)展過(guò)程,進(jìn)一步認(rèn)識(shí)和體會(huì)數(shù)學(xué)知識(shí)的重要用途,增強(qiáng)應(yīng)用意識(shí)。

  4.加強(qiáng)作圖的訓(xùn)練和指導(dǎo),重視作圖能力的培養(yǎng)。

  這一單元涉及到許多作圖的內(nèi)容,如畫(huà)垂線、畫(huà)平行線、畫(huà)長(zhǎng)方形和正方形、畫(huà)平行四邊形和梯形的高等,對(duì)四年級(jí)學(xué)生來(lái)說(shuō),這些都有一定的難度,教學(xué)時(shí)要加強(qiáng)作圖的訓(xùn)練和指導(dǎo),重視作圖能力的培養(yǎng)。

  5.本單元可用6課時(shí)完成。

平行四邊形教案 篇4

  一、實(shí)驗(yàn)?zāi)康?/strong>

  驗(yàn)證互成角度的兩個(gè)力合成時(shí)的平行四邊形定則.

  二、實(shí)驗(yàn)原理

  如果使F1、F2的共同作用效果與另一個(gè)力F′的作用效果相同(橡皮條在某一方向伸長(zhǎng)一定的長(zhǎng)度),那么根據(jù)F1、F2用平行四邊形定則求出的合力F,應(yīng)與F′在實(shí)驗(yàn)誤差允許范圍內(nèi)大小相等、方向相同.

  實(shí)驗(yàn)器材

  方木板一塊、白紙、彈簧測(cè)力計(jì)(兩只)、橡皮條、細(xì)繩套(兩個(gè))、三角板、刻度尺、圖釘(幾個(gè))、細(xì)芯鉛筆.

  三、實(shí)驗(yàn)步驟

 。ㄒ唬x器的安裝

  1.用圖釘把白紙釘在水平桌面上的方木板上.并用圖釘把橡皮條的一端固定在A點(diǎn),橡皮條的另一端拴上兩個(gè)細(xì)繩套.

  (二)、操作與記錄

  2. 用兩只彈簧測(cè)力計(jì)分別鉤住細(xì)繩套,互成角度地 拉橡皮條,使橡皮條伸長(zhǎng)到某一位置O,如圖所示,記錄兩彈簧測(cè)力計(jì)的讀數(shù),用鉛筆描下O點(diǎn)的位置及此時(shí)兩細(xì)繩套的方向.

  3.只用一只彈簧測(cè)力計(jì)通過(guò)細(xì)繩套把橡皮條的結(jié)點(diǎn)拉到同樣的位置O,記下彈簧測(cè)力計(jì)的讀數(shù)和細(xì)繩套的方向.

  (三)、作圖及分析

  4.改變兩個(gè)力F1與F2的大小和夾角,再重復(fù)實(shí)驗(yàn)兩次.

  5.用鉛筆和刻度尺從結(jié)點(diǎn)O沿兩條細(xì)繩套方向畫(huà)直線,按選定的標(biāo)度作出這兩只彈簧測(cè)力計(jì)的讀數(shù)F1和F2的圖示,并以F1和F2為鄰邊用刻度尺作平行四邊形,過(guò)O點(diǎn)畫(huà)平行四邊形的對(duì)角線,此對(duì)角線即為合力F的圖示.

  6.用刻度尺從O點(diǎn)按同樣的標(biāo)度沿記錄的方向作出這只彈簧測(cè)力計(jì)的拉力F′的圖示.

  7.比較一下,力F′與用平行四邊形定則求出的合力F在誤差范圍內(nèi)大小和方向上是否相同.

  四、注意事項(xiàng)

  1.位置不變:在同一次實(shí)驗(yàn)中,使橡皮條拉長(zhǎng)時(shí)結(jié)點(diǎn)的位置一定要相同.

  2.角度合適:用兩個(gè)彈簧測(cè)力計(jì)鉤住細(xì)繩套互成角度地拉橡皮條時(shí),其夾角不宜太小,也不宜太大,以60°~100°之間為宜.

  3.盡量減少誤差

  (1)在合力不超出量程及在橡皮條彈性限度內(nèi)的前提下,測(cè)量數(shù)據(jù)應(yīng)盡量大一些.

  (2)細(xì)繩套應(yīng)適當(dāng)長(zhǎng)一些,便于確定力的方向.不要直接沿細(xì)繩套方向畫(huà)直線,應(yīng)在細(xì)繩套兩端畫(huà)個(gè)投影點(diǎn),去掉細(xì)繩套后,連直線確定力的方向.

  4.統(tǒng)一標(biāo)度:在同一次實(shí)驗(yàn)中,畫(huà)力的圖示選定的標(biāo)度要相同,并且要恰當(dāng)選定標(biāo)度,使力的圖示稍大一些.

  五、誤差分析

  本實(shí)驗(yàn)的誤差除彈簧測(cè)力計(jì)本身的誤差外,還主要來(lái)源于以下兩個(gè)方面:

  1.讀數(shù)誤差

  減小讀數(shù)誤差的方法:彈簧測(cè)力計(jì)數(shù)據(jù)在允許的情況下,盡量大一些.讀數(shù)時(shí)眼睛一定要正視,要按有效數(shù)字正確讀數(shù)和記錄.

  2.作圖誤差

  減小作圖誤差的方法:作圖時(shí)兩力的對(duì)邊一定要平行,兩個(gè)分力F1、F2間的夾角越大,用平行四邊形作出的合力F的誤差ΔF就越大,所以實(shí)驗(yàn)中不要把F1、F2間的夾角取得太大。

  例1、對(duì)實(shí)驗(yàn)原理誤差分析及讀數(shù)能力的考查:(1)某實(shí)驗(yàn)小組在探究合力的方法時(shí),先將橡皮條的一端固定在水平木板上,另一端系上帶有繩套的兩根細(xì)繩.實(shí)驗(yàn)時(shí),需要兩次拉伸橡皮條,一次是通過(guò)兩細(xì)繩用兩個(gè)彈簧秤互成角度地拉橡皮條,另一次是用一個(gè)彈簧秤通過(guò)細(xì)繩拉橡皮條.實(shí)驗(yàn)對(duì)兩次拉伸橡皮條的要求中,下列哪些說(shuō)法是正確的_BD_______.(填字母代號(hào))

  A.將橡皮條拉伸相同長(zhǎng)度即可

  B.將橡皮條沿相同方向拉到相同長(zhǎng)度

  C.將彈簧秤都拉伸到相同刻度

  D.將橡皮條和細(xì)繩的結(jié)點(diǎn)拉到相同位置

  (2)同學(xué)們?cè)诓僮鬟^(guò)程中有如下議論,其中對(duì)減小實(shí)驗(yàn)誤差有益的說(shuō)法是__AD______.(填字母代號(hào))

  A.彈簧秤、細(xì)繩、橡皮條都應(yīng)與木板平行

  B.兩細(xì)繩之間的夾角越大越好

  C.用兩彈簧秤同時(shí)拉細(xì)繩時(shí)兩彈簧秤示數(shù)之差應(yīng)盡可能大

  D.拉橡皮條的細(xì)繩要長(zhǎng)些,標(biāo)記同一細(xì)繩方向的兩點(diǎn)要遠(yuǎn)些

  (3)彈簧測(cè)力計(jì)的指針如圖所示,由圖可知拉力的大小為_(kāi)_4.00____N.

  例2對(duì)實(shí)驗(yàn)操作過(guò)程的考察: 某同學(xué)在家中嘗試驗(yàn)證平行四邊形定則,他找到三條相同的橡皮筋(遵循胡克定律)和若干小重物,以及刻度尺、三角板、鉛筆、細(xì)繩、白紙、釘子,設(shè)計(jì)了如下實(shí)驗(yàn):將兩條橡皮筋的一端分別掛在墻上的兩個(gè)釘子A、B上,另一端與第三條橡皮筋連接,結(jié)點(diǎn)為O,將第三條橡皮筋的另一端通過(guò)細(xì)繩掛一重物,如圖所示

  (1)為完成該實(shí)驗(yàn),下述操作中必需的是___bcd _____.

  a.測(cè)量細(xì)繩的長(zhǎng)度

  b.測(cè)量橡皮筋的原長(zhǎng)

  c.測(cè)量懸掛重物后橡皮筋的長(zhǎng)度

  d.記錄懸掛重物后結(jié)點(diǎn)O的位置

  (2)釘子位置固定,欲利用現(xiàn)有器材,改變條件再次驗(yàn)證,可采用的方法是________改變重物質(zhì)量______.

  例3:有同學(xué)利用如圖2-3-4所示的裝置來(lái)驗(yàn)證力的平行四邊形定則:在豎直木板上鋪有白紙,固定兩個(gè)光滑的滑輪A和B,將繩子打一個(gè)結(jié)點(diǎn)O,每個(gè)鉤碼的.重量相等,當(dāng)系統(tǒng)達(dá)到平衡時(shí),根據(jù)鉤碼個(gè)數(shù)讀出三根繩子的拉力F1、F2和F3,回答下列問(wèn)題:

  (1)改變鉤碼個(gè)數(shù),實(shí)驗(yàn)?zāi)芡瓿傻氖?(BCD )

  A.鉤碼的個(gè)數(shù)N1=N2=2,N3=4

  B.鉤碼的個(gè)數(shù)N1=N3=3,N2=4

  C.鉤碼的個(gè)數(shù)N1=N2=N3=4

  D.鉤碼的個(gè)數(shù)N1=3,N2=4,N3=5

  (2)在拆下鉤碼和繩子前,最重要的一個(gè)步驟是 ( A )

  A.標(biāo)記結(jié)點(diǎn)O的位置,并記錄OA、OB、OC三段繩子的方向

  B.量出OA、OB、OC三段繩子的長(zhǎng)度

  C.用量角器量出三段繩子之間的夾角

  D.用天平測(cè)出鉤碼的質(zhì)量

  (3)在作圖時(shí),你認(rèn)為圖中____甲____是正確的.(填“甲”或“乙”)

  當(dāng)堂反饋:

  1、“驗(yàn)證力的平行四邊形定則”的實(shí)驗(yàn)情況如圖甲所示,其中A為固定橡皮筋的圖釘,O為橡皮筋與細(xì)繩的結(jié)點(diǎn),OB和OC為細(xì)繩.圖乙是在白紙上根據(jù)實(shí)驗(yàn)結(jié)果畫(huà)出的圖.

  (1)如果沒(méi)有操作失誤,圖乙中的F與F′兩力中,方向一定沿AO方向的是___ F′_____.

  (2)本實(shí)驗(yàn)采用的科學(xué)方法是__B______.

  A.理想實(shí)驗(yàn)法 B.等效替代法 C.控制變量法 D.建立物理模型法

  2、某同學(xué)做“驗(yàn)證力的平行四邊形定則”實(shí)驗(yàn)時(shí),主要步驟是:

  A.在桌上放一塊方木板,在方木板上鋪一張白紙,用圖釘把白紙釘在方木板上;

  B.用圖釘把橡皮條的一端固定在板上的A點(diǎn),在橡皮條的另一端拴上兩條細(xì)繩,細(xì)繩的另一端系著繩套;

  C.用兩個(gè)彈簧測(cè)力計(jì)分別鉤住繩套,互成角度地拉橡皮條,使橡皮條伸長(zhǎng),結(jié)點(diǎn)到達(dá)某一位置O.記錄下O點(diǎn)的位置,讀出兩個(gè)彈簧測(cè)力計(jì)的示數(shù);

  D.按選好的標(biāo)度,用鉛筆和刻度尺作出兩只彈簧測(cè)力計(jì)的拉力F1和F2的圖示,并用平行四邊形定則求出合力F;

  E.只用一只彈簧測(cè)力計(jì),通過(guò)細(xì)繩套拉橡皮條使其伸長(zhǎng),讀出彈簧測(cè)力計(jì)的示數(shù),記下細(xì)繩的方向,按同一標(biāo)度作出這個(gè)力F′的圖示;

  F.比較F′和F的大小和方向,看它們是否相同,得出結(jié)論.

  上述步驟中:(1)有重要遺漏的步驟的序號(hào)是__C______和____E____;

  (2)遺漏的內(nèi)容分別是________________________________________________________________________

平行四邊形教案 篇5

  教學(xué)目標(biāo):

  1.使學(xué)生在理解的基礎(chǔ)上掌握平行四邊形面積的計(jì)算公式,并會(huì)運(yùn)用公式正確地計(jì)算平行四邊形的面積.

  2.通過(guò)操作、觀察、比較,發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生運(yùn)用轉(zhuǎn)化的思考方法解決問(wèn)題的能力和邏輯思維能力.

  3.對(duì)學(xué)生進(jìn)行辯詐唯物主義觀點(diǎn)的啟蒙教育.

  教學(xué)重點(diǎn):理解公式并正確計(jì)算平行四邊形的面積.

  教學(xué)難點(diǎn):理解平行四邊形面積公式的推導(dǎo)過(guò)程.

  學(xué)具準(zhǔn)備:每個(gè)學(xué)生準(zhǔn)備一個(gè)平行四邊形。

  教學(xué)過(guò)程:

  一、導(dǎo)入新課

  1、什么是面積?

  2、請(qǐng)同學(xué)翻書(shū)到80頁(yè),請(qǐng)觀察這兩個(gè)花壇,哪一個(gè)大呢?假如這塊長(zhǎng)方形花壇的長(zhǎng)是3米,寬是2米,怎樣計(jì)算它的面積呢?根據(jù)長(zhǎng)方形的面積=長(zhǎng)寬(板書(shū)),得出長(zhǎng)方形花壇的面積是6平方米,平行四邊形面積我們還沒(méi)有學(xué)過(guò),所以不能計(jì)算出平行四邊形花壇的面積,這節(jié)課我們就學(xué)習(xí)平行四邊形面積計(jì)算。

  二、民主導(dǎo)學(xué)

 。ㄒ唬(shù)方格法

  用展示臺(tái)出示方格圖

  1、這是什么圖形?(長(zhǎng)方形)如果每個(gè)小方格代表1平方厘米,這個(gè)長(zhǎng)方形的面積是多少?(18平方厘米)

  2、這是什么圖形?(平行四邊形)每一個(gè)方格表示1平方厘米,自己數(shù)一數(shù)是多少平方厘米?

  請(qǐng)同學(xué)認(rèn)真觀察一下,平行四邊形在方格紙上出現(xiàn)了不滿一格的,怎么數(shù)呢?可以都按半格計(jì)算。然后指名說(shuō)出數(shù)得的結(jié)果,并說(shuō)一說(shuō)是怎樣數(shù)的。

  2、請(qǐng)同學(xué)看方格圖填80頁(yè)最下方的表,填完后請(qǐng)學(xué)生回答發(fā)現(xiàn)了什么?

  小結(jié):如果長(zhǎng)方形的長(zhǎng)和寬分別等于平行四邊形的底和高,則它們的面積相等。

 。ǘ┮敫钛a(bǔ)法

  以后我們遇到平行四邊形的地、平行四邊形的零件等等平行四邊形的東西,都像這樣數(shù)方格的`方法來(lái)計(jì)算平行四邊形的面積方不方便?那么我們就要找到一種方便、又有規(guī)律的計(jì)算平行四邊形面積的方法。

 。ㄈ└钛a(bǔ)法

  1、這是一個(gè)平行四邊形,請(qǐng)同學(xué)們把自己準(zhǔn)備的平行四邊形沿著所作的高剪下來(lái),自己拼一下,看可以拼成我們以前學(xué)過(guò)的什么圖形?

  2、然后指名到前邊演示。

  3、教師示范平行四邊形轉(zhuǎn)化成長(zhǎng)方形的過(guò)程。

  剛才發(fā)現(xiàn)同學(xué)們把平行四邊形轉(zhuǎn)化成長(zhǎng)方形時(shí),就把從平行四邊形左邊剪下的直角三角形直接放在剩下的梯形的右邊,拼成長(zhǎng)方形。在變換圖形的位置時(shí),怎樣按照一定的規(guī)律做呢?現(xiàn)在看老師在黑板上演示。

 、傧妊刂叫兴倪呅蔚母呒粝伦筮叺闹苯侨切。

  ②左手按住剩下的梯形的右部,右手拿著剪下的直角三角形沿著底邊慢慢向右移動(dòng)。

 、垡苿(dòng)一段后,左手改按梯形的左部。右手再拿著直角三角形繼續(xù)沿著底邊慢慢向右移動(dòng),到兩個(gè)斜邊重合為止。

  請(qǐng)同學(xué)們把自己剪下來(lái)的直角三角形放回原處,再沿著平行四邊形的底邊向右慢慢移動(dòng),直到兩個(gè)斜邊重合。(教師巡視指導(dǎo)。)

  4、觀察(黑板上在剪拼成的長(zhǎng)方形左面放一個(gè)原來(lái)的平行四邊形,便于比較。)

  您現(xiàn)在正在閱讀的五年級(jí)上冊(cè)《平行四邊形的面積》教學(xué)設(shè)計(jì)文章內(nèi)容由收集!本站將為您提供更多的精品教學(xué)資源!五年級(jí)上冊(cè)《平行四邊形的面積》教學(xué)設(shè)計(jì)①這個(gè)由平行四邊形轉(zhuǎn)化成的長(zhǎng)方形的面積與原來(lái)的平行四邊形的面積比較,有沒(méi)有變化?為什么?

  ②這個(gè)長(zhǎng)方形的長(zhǎng)與平行四邊形的底有什么樣的關(guān)系?

  ③這個(gè)長(zhǎng)方形的寬與平行四邊形的高有什么樣的關(guān)系?

  教師歸納整理:任意一個(gè)平行四邊形都可以轉(zhuǎn)化成一個(gè)長(zhǎng)方形,它的面積和原來(lái)的平行四邊形的面積相等,它的長(zhǎng)、寬分別和原來(lái)的平行四邊形的底、高相等。

  5、引導(dǎo)學(xué)生總結(jié)平行四邊形面積計(jì)算公式。

  這個(gè)長(zhǎng)方形的面積怎么求?(指名回答后,在長(zhǎng)方形右面板書(shū):長(zhǎng)方形的面積=長(zhǎng)寬)

  那么,平行四邊形的面積怎么求?(指名回答后,在平行四邊形右面板書(shū):平行四邊形的面積=底高。)

  6、教學(xué)用字母表示平行四邊形的面積公式。

  板書(shū):S=ah

  說(shuō)明在含有字母的式子里,字母和字母中間的乘號(hào)可以記作,寫(xiě)成ah,也可以省略不寫(xiě),所以平行四邊形面積的計(jì)算公式可以寫(xiě)成S=ah,或者S=ah。

 。6)完成第81頁(yè)中間的填空。

  7、驗(yàn)證公式

  學(xué)生利用所學(xué)的公式計(jì)算出方格圖中平行四邊形的面積和用數(shù)方格的方法求出的面積相比較相等 ,加以驗(yàn)證。

  條件強(qiáng)化:求平行四邊形的面積必須知道哪兩個(gè)條件?(底和高)

  三、檢測(cè)導(dǎo)結(jié)

  1、學(xué)生自學(xué)例1后,教師根據(jù)學(xué)生提出的問(wèn)題講解。

  2、判斷,并說(shuō)明理由。

  (1)兩個(gè)平行四邊形的高相等,它們的面積就相等()

  (2)平行四邊形底越長(zhǎng),它的面積就越大()

  3、做書(shū)上82頁(yè)2題。

  4、小結(jié)

  今天,你學(xué)會(huì)了什么?怎樣求平行四邊形的面積?平行四邊形的面積計(jì)算公式是怎樣推導(dǎo)的?

  5、作業(yè)

  練習(xí)十五第1題。

  附:板書(shū)設(shè)計(jì)

  平行四邊形面積的計(jì)算

  長(zhǎng)方形的面積=長(zhǎng)寬 平行四邊形的面積=底高

  S=ah S=ah或S=ah

平行四邊形教案 篇6

  教學(xué)目標(biāo):

  1、通過(guò)觀察、比較等方法,初步認(rèn)識(shí)平行四邊形,初步感知平行四邊形的特征。

  2、參與對(duì)圖形的圍、拼、折等實(shí)踐活動(dòng),體會(huì)圖形的變換,發(fā)展空間觀念。

  3、在學(xué)習(xí)活動(dòng)中積累對(duì)數(shù)學(xué)的興趣,培養(yǎng)交往、合作意識(shí)。

  教學(xué)重點(diǎn):認(rèn)識(shí)平行四邊形。

  教學(xué)難點(diǎn):感悟平行四邊形的特征。

  教學(xué)過(guò)程:

  一、情境導(dǎo)入

  同學(xué)們,上節(jié)課我們知道了什么是四邊形以及它的特點(diǎn),今天,老師又給你們帶來(lái)了一位新朋友(出示平行四邊形圖),你們見(jiàn)過(guò)它嗎?這節(jié)課我們就來(lái)認(rèn)識(shí)這位新朋友。

  二、自主探究

  同學(xué)們?cè)谏钪幸?jiàn)過(guò)這樣的圖形嗎?在哪見(jiàn)過(guò)?

  看,這是教師在生活中見(jiàn)到的四邊形,你知道這是什么嗎?

  課件出示:教材第14頁(yè)例2圖

  第一幅圖是掛衣服的架子,第二幅圖是圍起來(lái)的籬笆墻,第三幅圖是樓梯的扶手。

  你能用兩塊完全一樣的三角尺拼出這樣的平行四邊形嗎?它跟長(zhǎng)方形、正方形有什么區(qū)別和聯(lián)系呢?試一試。

  學(xué)生動(dòng)手操作,嘗試拼平行四邊形,教師巡視指導(dǎo)。

  組織交流,展示學(xué)生拼圖結(jié)果,并讓學(xué)生說(shuō)說(shuō)發(fā)現(xiàn)了什么?

  (它們的對(duì)邊一樣長(zhǎng),長(zhǎng)方形、正方形和平行四邊形都是四邊形,長(zhǎng)方形、正方形的'四個(gè)角都是直角,平行四邊形的角不是直角)

  老師邊畫(huà)平行四邊形邊指出:像這樣的四邊形叫做平行四邊形。

  三、鞏固練習(xí)

  1.“想想做做”第1題。學(xué)生獨(dú)立完成,分小組討論, 匯報(bào)。

  2.“想想做做”第2題。組織學(xué)生想一想,再圍一圍。

  3.“想想做做”第3題,學(xué)生在書(shū)上描一描,教師巡視檢查。

  4.“想想做做”第4題,學(xué)生動(dòng)手完成。

  5. “想想做做”第5題,學(xué)生在家長(zhǎng)的幫助下完成。

  三、全課總結(jié)

  提問(wèn):今天這節(jié)課你有什么收獲?

  課后反思: 文 章

平行四邊形教案 篇7

  教學(xué)內(nèi)容

  本冊(cè)教材第37—38頁(yè)上的內(nèi)容,完成第37頁(yè)上的“做一做”。

  教學(xué)目的

  1、使學(xué)生初步認(rèn)識(shí)平行四邊形,了解平行四邊形的特點(diǎn)。

  2、通過(guò)學(xué)生手動(dòng)、腦想、眼看,使學(xué)生在多種感官的協(xié)調(diào)活動(dòng)中積累感性認(rèn)識(shí),發(fā)展空間觀念。

  教學(xué)重點(diǎn)

  探究平行四邊形的特點(diǎn)。

  教學(xué)難點(diǎn)

  讓學(xué)生動(dòng)手畫(huà)、剪平行四邊形。

  教學(xué)過(guò)程

  (一)認(rèn)識(shí)平行四邊形

  1、出示主題圖。

  從圖中你看到了哪些圖形,指給同桌看。

  2、出示帶有平行四邊形的實(shí)物圖片。

  師:它們是正方形嗎?是長(zhǎng)方形嗎?(學(xué)生回答后,教師接著問(wèn)。)

  師:它們有幾條邊?幾個(gè)角?它們叫什么圖形呢?

  學(xué)生回答后教師說(shuō)明:這樣的圖形叫平行四邊形。

  3、感受平行四邊形的特點(diǎn)

 。1)讓學(xué)生拿出三條硬紙條,用圖釘把它們釘成三角形,然后拉一拉。(學(xué)生一邊拉一邊說(shuō)自己的感受)

 。2)讓學(xué)生拿出教師給他們準(zhǔn)備的四條硬紙條,用圖釘把它們釘成一個(gè)平行四邊形形,然后拉一拉。(學(xué)生一邊拉一邊說(shuō)自己的`感受)

 。3)小組討論操作:怎樣才能使平行四邊形拉不動(dòng)呢?

  學(xué)生匯報(bào)時(shí),要說(shuō)說(shuō)理由。

  (二)掌握平行四邊形。

  1、在釘子板上“鉤”。

  你認(rèn)為什么樣的圖形是平行四邊形呢?在釘子板上圍圍看。(學(xué)生動(dòng)手操作,

  然后匯報(bào)、展示)

  2、在方格紙上“畫(huà)”。

  讓學(xué)生在方格紙上畫(huà)出一個(gè)平行四邊形。(學(xué)生動(dòng)手操作,然后匯報(bào)、展示)

  3、折一折、剪一剪。

  你會(huì)剪一個(gè)平行四邊形嗎?(學(xué)生動(dòng)手操作,然后匯報(bào)、展示并說(shuō)說(shuō)各自不同的剪法。)

  4、通過(guò)上面的活動(dòng),你發(fā)現(xiàn)平行四邊形是一個(gè)什么樣的圖形?(小組討論)

  (三)鞏固平行四邊形。

  1、課堂練習(xí):完成練習(xí)九第1—3題。

  2、課外練習(xí):完成練習(xí)九第5題。

平行四邊形教案 篇8

  一、學(xué)習(xí)目標(biāo)

 。、經(jīng)歷探索多項(xiàng)式與多項(xiàng)式相乘的運(yùn)算法則的過(guò)程,發(fā)展有條理的思考及語(yǔ)言表達(dá)能力。

  2、 會(huì)進(jìn)行簡(jiǎn)單的多項(xiàng)式與多項(xiàng)式的乘法運(yùn)算

  二、學(xué)習(xí)過(guò)程

 。ㄒ唬┳詫W(xué)導(dǎo)航

  1、創(chuàng)設(shè)情境

  某地區(qū)在退耕還林期間,將一塊長(zhǎng)m米、寬a米的長(zhǎng)方形林區(qū)的長(zhǎng)、寬分別增加n米和b米,用兩種方法表示這塊林區(qū)現(xiàn)在的面積。

  這塊林區(qū)現(xiàn)在的長(zhǎng)為 米,寬為 米。因而面積為_(kāi)_______米2。

  還可以把這塊林地分為四小塊,它們的面積分別為 米2, 米2,_______米2, 米2。故這塊地的面積為 。

  由于這兩個(gè)算式表示的都是同一塊地的面積,則有 =

  如果把(m+n)看作一個(gè)整體,你還能用別的方法得到這個(gè)等式嗎?

  2、概括:

  多項(xiàng)式乘以多項(xiàng)式的法則:

  3、計(jì)算

 。1) (2)

  4、練一練

 。1)

  (二)合作攻關(guān)

  1、某酒店的廚房進(jìn)行改造,在廚房的中間設(shè)計(jì)一個(gè)準(zhǔn)備臺(tái),要求四面的過(guò)道寬都為x米,已知廚房的長(zhǎng)寬分別為8米和5米,用代數(shù)式表示該廚房過(guò)道的總面積。

  2、解方程

 。ㄈ┻_(dá)標(biāo)訓(xùn)練

  1、填空題:

 。1) = =

  (2) = 。

  2、計(jì)算

 。1) (2)

 。3) (4)

 。ㄋ模┨嵘

  1、怎樣進(jìn)行多項(xiàng)式與多項(xiàng)式的乘法運(yùn)算?

  2、若 的乘積中不含 和 項(xiàng),則a= b=

  應(yīng)用題

  第三十五講 應(yīng)用題

  在本講中將介紹各類應(yīng)用題的解法與技巧.

  當(dāng)今數(shù)學(xué)已經(jīng)滲入到整個(gè)社會(huì)的各個(gè)領(lǐng)域,因此,應(yīng)用數(shù)學(xué)去觀察、分析日常生活現(xiàn)象,去解決日常生活問(wèn)題,成為各類數(shù)學(xué)競(jìng)賽的一個(gè)熱點(diǎn).

  應(yīng)用性問(wèn)題能引導(dǎo)學(xué)生關(guān)心生活、關(guān)心社會(huì),使學(xué)生充分到數(shù)學(xué)與自然和人類社會(huì)的密切聯(lián)系,增強(qiáng)對(duì)數(shù)學(xué)的理解和應(yīng)用數(shù)學(xué)的信心.

  解答應(yīng)用性問(wèn)題,關(guān)鍵是要學(xué)會(huì)運(yùn)用數(shù)學(xué)知識(shí)去觀察、分析、概括所給的實(shí)際問(wèn)題,揭示其數(shù)學(xué)本質(zhì),將其轉(zhuǎn)化為數(shù)學(xué)模型.其求解程序如下:

  在初中范圍內(nèi)常見(jiàn)的數(shù)學(xué)模型有:數(shù)式模型、方程模型、不等式模型、函數(shù)模型、平面幾何模型、圖表模型等.

  例題求解

  一、用數(shù)式模型解決應(yīng)用題

  數(shù)與式是最基本的數(shù)學(xué)語(yǔ)言,由于它能夠有效、簡(jiǎn)捷、準(zhǔn)確地揭示數(shù)學(xué)的本質(zhì),富有通用性和啟發(fā)性,因而成為描述和表達(dá)數(shù)學(xué)問(wèn)題的重要方法.

  【例1】(20xx年安徽中考題)某風(fēng)景區(qū)對(duì)5個(gè)旅游景點(diǎn)的門(mén)票價(jià)格進(jìn)行了調(diào)整,據(jù)統(tǒng)計(jì),調(diào)價(jià)前后各景點(diǎn)的游客人數(shù)基本不變。有關(guān)數(shù)據(jù)如下表所示:

  景點(diǎn)ABCDE

  原價(jià)(元)1010152025

  現(xiàn)價(jià)(元)55152530

  平均日人數(shù)(千人)11232

 。1)該風(fēng)景區(qū)稱調(diào)整前后這5個(gè)景點(diǎn)門(mén)票的平均收費(fèi)不變,平均日總收入持平。問(wèn)風(fēng)景區(qū)是怎樣計(jì)算的?

 。2)另一方面,游客認(rèn)為調(diào)整收費(fèi)后風(fēng)景區(qū)的平均日總收入相對(duì)于調(diào)價(jià)前,實(shí)際上增加了約9.4%。問(wèn)游客是 怎樣計(jì)算的?

 。3)你認(rèn)為風(fēng)景區(qū)和游客哪一個(gè)的說(shuō)法較能反映整體實(shí)際?

  思路點(diǎn)撥 (1)風(fēng)景區(qū)是這樣計(jì)算的:

  調(diào)整前的平均價(jià)格: ,設(shè)整后的平均價(jià)格:

  ∵調(diào)整前后的平均價(jià)格不變,平均日人數(shù)不變.

  ∴平均日總收入持平.

 。 2)游客是這樣計(jì)算的:

  原平均日總收入:10×1+10×1+15×2+20×3+25×2=160(千元)

  現(xiàn)平均日總收入:5×1+5×1+15×2+25×3+30×2=175(千元)

  ∴平均日總收入增加了

  (3)游客的說(shuō)法較能反映整體實(shí)際.

  二、用方程模型解應(yīng)用題

  研究和解決生產(chǎn)實(shí)際和現(xiàn)實(shí)生恬中有關(guān)問(wèn)題常常要用到方程<組)的知識(shí),它可以幫助人們從數(shù)量關(guān)系和相等關(guān)系的角度去認(rèn)識(shí)和理解現(xiàn)實(shí)世界.

  【例2】 (重慶中考題)某中學(xué)新建了一棟4層的教學(xué)大樓,每層樓有8間教室,進(jìn)出這棟大樓共有4道門(mén),其中兩道正門(mén)大小相同,兩道側(cè)門(mén)大小也相同.安全檢查中,對(duì)4道門(mén)進(jìn)行了測(cè)試:當(dāng)同時(shí)開(kāi)啟一道正門(mén)和兩道側(cè)門(mén)時(shí),2min內(nèi)可以通過(guò)560名學(xué)生;當(dāng)同時(shí)開(kāi)啟一道正門(mén)和一道側(cè)門(mén)時(shí),4mln內(nèi)可以通過(guò)800名學(xué)生.

  (1)求平均每分鐘一道正門(mén)和一道側(cè)門(mén)各可以通過(guò)多少名學(xué)生?

  (2)檢查中發(fā)現(xiàn),緊急情況時(shí)因?qū)W生擁擠,出門(mén)的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學(xué)生應(yīng)在5min內(nèi)通過(guò)這4道門(mén)安全撤離.假設(shè)這棟教學(xué)大樓每間教室最多有45名學(xué)生,問(wèn):建造的這4道門(mén)整否符合安全規(guī)定?請(qǐng)說(shuō)明理由.

  思路點(diǎn)撥 列方程(組)的關(guān)鍵是找到題中等量關(guān)系:兩種測(cè)試中通過(guò)的學(xué)生數(shù)量.設(shè)未知數(shù)時(shí)一般問(wèn)什么設(shè)什么.“符合安全規(guī)定”之義為最大通過(guò)量不小于學(xué)生總數(shù).

  (1)設(shè)平均每分鐘一道正門(mén)可以通過(guò)x名學(xué)生,一道側(cè)門(mén)可以通過(guò)y名學(xué)生,由題意得:

  ,解得:

  (2)這棟樓最多有學(xué)生4×8×4 5=1440(名).

  擁擠時(shí)5min4道門(mén)能通過(guò).

  5×2(120+80)(1-20%)=1600(名),

  因1600>1440,故建造的4道門(mén)符合安全規(guī)定.

  三、用不等式模型解應(yīng)用題

  現(xiàn)實(shí)世界中的不等關(guān)系是普遍存在的,許多問(wèn)題有時(shí)并不需要研究它們之間的相等關(guān)系,只需要確定某個(gè)量的變化范圍,即可對(duì)所研究的問(wèn)題有比較清楚的認(rèn)識(shí).

  【例3】 (蘇州中考題)我國(guó)東南沿海某地的風(fēng)力資源豐富,一年內(nèi)月平均的風(fēng)速不小于3m/s的時(shí)間共約160天,其中日平均風(fēng)速不小于6m/s的時(shí)間占60天.為了充分利用“風(fēng)能”這種“綠色資源”,該地?cái)M建一個(gè)小型風(fēng)力發(fā)電場(chǎng),決定選用A、B兩種型號(hào)的風(fēng)力發(fā)電機(jī),根據(jù)產(chǎn)品說(shuō)明,這兩種風(fēng)力發(fā)電機(jī)在各種風(fēng)速下的日發(fā)電量(即一天的發(fā)電量)如下表:一天的發(fā)電量)如下表:

  日平均風(fēng)速v(米/秒)v<33≤v<6v≥6

  日發(fā)電量 (千瓦?時(shí))A型發(fā)電機(jī)O≥36≥150

  B型發(fā)電機(jī)O≥24≥90

  根據(jù)上面的數(shù)據(jù)回答:

  (1)若這個(gè)發(fā)電場(chǎng)購(gòu)x臺(tái)A型風(fēng)力發(fā)電機(jī),則預(yù)計(jì)這些A型風(fēng)力發(fā)電機(jī)一年的發(fā)電總量至少為 千瓦?時(shí);

  (2)已知A型風(fēng)力發(fā)電機(jī)每臺(tái)O.3萬(wàn)元,B型風(fēng)力發(fā)電機(jī)每臺(tái)O.2萬(wàn)元.該發(fā)電場(chǎng)擬購(gòu)置風(fēng)力發(fā)電機(jī)共10臺(tái),希望購(gòu)機(jī)的費(fèi)用不超過(guò)2.6萬(wàn)元,而建成的風(fēng)力發(fā)電場(chǎng)每年的發(fā)電總量不少于102000千瓦?時(shí),請(qǐng)你提供符合條件的購(gòu)機(jī)方案.

  根據(jù)上面的數(shù)據(jù)回答:

  思路點(diǎn)撥 (1) (100×36+60×150)x=12600x;

  (2)設(shè)購(gòu)A型發(fā)電機(jī)x臺(tái),則購(gòu)B型發(fā)電機(jī)(10—x)臺(tái),

  解法一根據(jù)題意得:

  解得5≤x ≤6.

  故可購(gòu)A型發(fā)電機(jī)5臺(tái),B型發(fā)電機(jī)5臺(tái);或購(gòu)A型發(fā)電機(jī)6臺(tái),B型發(fā)電視4臺(tái).

  四、用函數(shù)知識(shí)解決的應(yīng)用題

  函數(shù)類應(yīng)用問(wèn)題主要有以下兩種類型:(1)從實(shí)際問(wèn)題出發(fā),引進(jìn)數(shù)學(xué)符號(hào),建立函數(shù)關(guān)系;(2)由提供的基本模型和初始條件去確定函數(shù)關(guān)系式.

  【例4】 (揚(yáng)州)楊嫂在再就業(yè)中心的扶持下,創(chuàng)辦了“潤(rùn)楊”報(bào)刊零售點(diǎn).對(duì)經(jīng)營(yíng)的某種晚報(bào),楊嫂提供丁如下信息:

 、儋I(mǎi)進(jìn)每份0.20元,賣(mài)出每份0.30元;

 、谝粋(gè)月內(nèi)(以30天計(jì)),有20天每天可以賣(mài)出200份,其余10天每天只能賣(mài)出120份;

 、垡粋(gè)月內(nèi),每天從報(bào)社買(mǎi)進(jìn)的報(bào)紙份數(shù)必須相同.當(dāng)天賣(mài)不掉的報(bào)紙,以每份0.10元退回給報(bào)社;

  (1)填表:

  一個(gè)月內(nèi)每天買(mǎi)進(jìn)該種晚報(bào)的份數(shù)100150

  當(dāng)月利潤(rùn)(單位:元)

  (2)設(shè)每天從報(bào)社買(mǎi)進(jìn)該種晚報(bào)x份,120≤x≤200時(shí),月利潤(rùn)為y元,試求出y與x的函數(shù)關(guān)系式,并求月利潤(rùn)的最大值.

  思路點(diǎn)撥(1)填表:

  一個(gè)月內(nèi)每天買(mǎi)進(jìn)該種晚報(bào)的份數(shù)100150

  當(dāng)月利潤(rùn)(單位:元)300390

  (2)由題意可知,一個(gè)月內(nèi)的20天可獲利潤(rùn):

  20×=2x(元);其余10天可獲利潤(rùn):

  10=240—x(元);

  故y=x+240,(120≤x≤200), 當(dāng)x=200時(shí),月利潤(rùn)y的最大值為440元.

  注 根據(jù)題意,正確列出函數(shù)關(guān)系式,是解決問(wèn)題的關(guān)鍵,這里特別要注意自變量x的取值范圍.

  另外,初三還會(huì)提及統(tǒng)計(jì)型應(yīng)用題,幾何型應(yīng)用題.

  【例5】 (桂林市)某公司需在一月(31天)內(nèi)完成新建辦公樓的裝修工程.如果由甲、乙兩個(gè)工程隊(duì)合做,12天可完成;如果由甲、乙兩隊(duì)單獨(dú)做,甲隊(duì)比乙隊(duì)少用10天完成.

 。1)求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程所需的天數(shù).

  (2)如果請(qǐng)甲工程隊(duì)施工,公司每日需付費(fèi)用200 0元;如果請(qǐng)乙工程隊(duì)施工,公司每日需付費(fèi)用1400元.在規(guī)定時(shí)間內(nèi):A.請(qǐng)甲隊(duì)單獨(dú)完成此項(xiàng)工程;B.請(qǐng)乙隊(duì)單獨(dú)完成此項(xiàng)工 程; C.請(qǐng)甲、乙兩隊(duì)合作完成此項(xiàng)工程.以上方案哪一種花錢(qián)最少?

  思路點(diǎn)撥 這是一道策略優(yōu)選問(wèn)題.工程問(wèn)題中:工作量=工作效率×工時(shí).

  (1)設(shè)乙工程隊(duì)單獨(dú)完成此項(xiàng)工程需x天,根據(jù)題意得:

  , x=30合題意,

  所以,甲工程隊(duì)單獨(dú)完成此項(xiàng)工程需用20天,乙隊(duì)需30天.

  (2)各種方案所需的費(fèi)用分別為:

  A.請(qǐng)甲隊(duì)需20xx×20=40000元;

  B.請(qǐng)乙隊(duì)需1400×30=4200元;

  C.請(qǐng)甲、乙兩隊(duì)合作需(20xx+1400)×12=40800元.

  所隊(duì)單獨(dú)請(qǐng)甲隊(duì)完成此項(xiàng)工程花錢(qián)最少.

  【例6】 (2全國(guó)聯(lián)賽初賽題)一支科學(xué)考察隊(duì)前往某條河流的上游去考察一個(gè)生態(tài)區(qū),他們以每天17km的速度出發(fā),沿河岸向上游行進(jìn)若干天后到達(dá)目的地,然后在生態(tài)區(qū)考察了若干天,完成任務(wù)后以每天25km的速度返回,在出發(fā)后的第60天,考察隊(duì)行進(jìn)了24km后回到出發(fā)點(diǎn),試問(wèn):科學(xué)考察隊(duì)的生態(tài)區(qū)考察了多少天?

  思路點(diǎn)撥 挖掘題目中隱藏條件是關(guān)鍵!

  設(shè)考察隊(duì)到 生態(tài)區(qū)去用了x天,返回用了y天,考察用了z天,則x+y+z=60,

  17x-25y=-1,即25y-17x=1. ①

  這里x、y是正整數(shù),現(xiàn)設(shè) 法求出①的.一組合題意的解,然后計(jì)算出z的值.

  為此,先求出①的一組特殊解(x0,y0),(這里x0,y0可以是負(fù)整數(shù)).用輾轉(zhuǎn)相除法.

  25=l ×17+8,17=2×8+1,故1=17—2×8=17-2×(25—17)=3 ×17-2×25.

  與①的左端比較可知,x0 =-3,y0=-2.

  下面再求出①的合題意的解.

  由不定方程的知識(shí)可知,①的一切整數(shù)解可表示為x=-3+25t,y=-2+17t,

  ∴ x+y=42t-5,t為整數(shù).按題意0

  ∴z=60—(x+y)=23.

  答:考察隊(duì)在生態(tài)區(qū)考察的天數(shù)是23天.

  注 本題涉及到的未知量多,最終轉(zhuǎn)化為二元一次不定方程來(lái)解,希讀者仔細(xì)咀嚼所用方法.

  【例7】 (江蘇省第17屆初中競(jìng)賽題)華鑫超市對(duì)顧客實(shí)行優(yōu)惠購(gòu)物,規(guī)定如下:

  (1)若一次購(gòu)物少于200元,則不予優(yōu)惠;

  (2)若一次購(gòu)物滿200元,但不超過(guò)500元,按標(biāo)價(jià)給予九折優(yōu)惠;

  (3)若一次購(gòu)物超過(guò)500元,其中500元部分給予九折優(yōu)惠,超過(guò)500元部分給予八折 優(yōu)惠.

  小明兩次去該超市購(gòu)物,分別付款198元與554元.現(xiàn)在小亮決定一次去購(gòu) 買(mǎi)小明分兩次購(gòu)買(mǎi)的同樣多的物品,他需付款多少?

  思路點(diǎn)撥 應(yīng)付198元購(gòu)物款討論:

  第一次付款198元,可是所購(gòu)物品的實(shí)價(jià),未 享受優(yōu)惠;也可能是按九折優(yōu)惠后所付的款.故應(yīng)分兩種情況加以討論.

  情形1 當(dāng)198元為購(gòu)物不打折付的錢(qián)時(shí),所購(gòu)物品的原價(jià)為198元 .

  又554=450+104,其中450元為購(gòu)物500元打九折付的錢(qián),104元為購(gòu)物打八折付的錢(qián);104÷0. 8 =130(元).

  因此,554元所購(gòu)物品的原價(jià)為130+500=630(元),于是購(gòu)買(mǎi)小呀花198 +630=828(元)所購(gòu)的全部物品,小亮一次性購(gòu)買(mǎi)應(yīng)付500×0.9+(828-500)×0.8=712.4(元).

  情形2 當(dāng)198元為購(gòu)物打九折付的錢(qián)時(shí),所購(gòu)物品的原價(jià)為198 ÷0.9=220(元) .仿情形1的討論,,購(gòu)220+630=850{元}物品一次性付款應(yīng)為500×0.9+(850-500)×0.8=730(元).

  綜上所述,小亮一次去超市購(gòu)買(mǎi)小明已購(gòu)的同樣多的物品,應(yīng)付款712.40元或730元

  【例8】 (20xx年全國(guó)數(shù)學(xué)競(jìng)賽題)某項(xiàng)工程,如果由甲、乙兩隊(duì)承包,2 天完成,需180000元;由乙、丙兩隊(duì)承包,3 天完成,需付150000元;由甲、丙兩隊(duì)承包,2 天完成,需付160000元.現(xiàn)在工程由一個(gè)隊(duì)單獨(dú)承包,在保證一周完成的前提下,哪個(gè)隊(duì)承包費(fèi)用最少?

  思路點(diǎn)撥 關(guān)鍵問(wèn)題是甲、乙、丙單獨(dú)做各需的天數(shù)及獨(dú)做時(shí)各方日付工資.分兩個(gè)層次考慮:

  設(shè)甲、乙、丙單獨(dú)承包各需x、y、z天完成.

  則 ,解得

  再設(shè)甲、乙、丙單獨(dú)工作一天,各需付u、v、w元,

  則 ,解得

  于是,由甲隊(duì)單獨(dú)承包,費(fèi)用是45500×4=182000 (元).

  由乙隊(duì)單獨(dú)承包,費(fèi)用是29500×6= 177000 (元).

  而丙隊(duì)不能在一周內(nèi)完成.所以由乙隊(duì)承包費(fèi)用最少.

  學(xué)歷訓(xùn)練

 。ˋ級(jí))

  1.(河南)在防治“SARS”的戰(zhàn)役中,為防止疫情擴(kuò)散,某制藥廠接到了生產(chǎn)240箱過(guò)氧乙酸消毒液的任務(wù).在生產(chǎn)了60箱后,需要加快生產(chǎn),每天比原來(lái)多生產(chǎn)15箱,結(jié)果6天就完成了任務(wù).求加快速度后每天生產(chǎn)多少箱消毒液?

  2.(山東省競(jìng)賽題)某市為鼓勵(lì)節(jié)約用水,對(duì)自來(lái)水妁收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水中不超過(guò)10t部分按0.45元/噸收費(fèi);超過(guò)10t而不超過(guò)20t部分按每噸0.8元收費(fèi);超過(guò)20t部分按每噸1.50元收費(fèi),某月甲戶比乙戶多繳水費(fèi)7.10元,乙戶比丙戶多繳水費(fèi)3.75元,問(wèn)甲、乙、丙該月各繳水費(fèi)多少?(自來(lái)水按整噸收費(fèi))

  3.(江蘇省競(jìng)賽題)甲、乙、丙三人共解出100道數(shù)學(xué)題,每人都解出了其中的60道題,將其中只有1人解出的題叫做難題,3人都解出的題叫做容易題.試問(wèn):難題多還是容易題多?多的比少的多幾道題?

  4.某人從A地到B地乘坐出租車(chē)有兩種方案,一種出租車(chē)收費(fèi)標(biāo)準(zhǔn)是起步價(jià)10元,每千米1.2元;另一種出租車(chē)收費(fèi)標(biāo)準(zhǔn)是起步價(jià)8元,每千米1.4元,問(wèn)選擇哪一種出租車(chē)比較合適?

  (提示:根據(jù)目前出租車(chē)管理?xiàng)l例,車(chē)型不同,起步價(jià)可以不同,但起步價(jià)的最大行駛里程是相同的,且此里程內(nèi)只收起步價(jià)而不管其行駛里程是多少)

  (B級(jí))

  1.(全國(guó)初中數(shù)學(xué)競(jìng)賽題)江堤邊一洼地發(fā)生了管涌,江水不斷地涌出,假定每分鐘涌出的水量相等,如果用兩臺(tái)抽水機(jī)抽水,40min可抽完;如果用4臺(tái)抽水機(jī)抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水機(jī) 臺(tái).

  2.(希望杯)有一批影碟機(jī)(VCD)原售價(jià):800元/臺(tái).甲商場(chǎng)用如下辦法促銷:

  購(gòu)買(mǎi)臺(tái)數(shù)1~5臺(tái)6~10臺(tái)11~15臺(tái)16~20臺(tái)20臺(tái)以上

  每臺(tái)價(jià)格760元720元680元640元600元

  乙商場(chǎng)用如下辦法促銷:每次購(gòu)買(mǎi)1~8臺(tái),每臺(tái)打九折;每次購(gòu)買(mǎi)9~16臺(tái),每臺(tái)打八五折; 每次購(gòu)買(mǎi)17~24臺(tái),每臺(tái)打八折;每次購(gòu)買(mǎi)24臺(tái)以上,每臺(tái)打七五折.

 。1)請(qǐng)仿照甲商場(chǎng)的促銷列表,列出到乙商場(chǎng)購(gòu)買(mǎi)VCD的購(gòu)買(mǎi)臺(tái)數(shù)與每臺(tái)價(jià)格的對(duì)照表;

  (2)現(xiàn)在有A、B、C三個(gè)單位,且單位要買(mǎi)10臺(tái)VCD,B單位要買(mǎi)16臺(tái)VCD,C單位要買(mǎi)20臺(tái)VCD,問(wèn)他們到哪家商場(chǎng)購(gòu)買(mǎi)花費(fèi)較少?

  3.(河北創(chuàng)新與知識(shí)應(yīng)用競(jìng)賽題)某錢(qián)幣收藏愛(ài)好者想把3.50元紙幣兌換成1分、2分、5分的硬幣,他要求硬幣總數(shù)為150枚,且每種硬幣不少于20枚,5分的硬幣要多于2分的硬幣.請(qǐng)你據(jù)此設(shè)計(jì)兌換方案.

  4.從自動(dòng)扶梯上走到二樓(扶梯本身也在行駛),如果男孩和女孩都做勻速運(yùn)動(dòng)且男孩每分鐘走動(dòng)的級(jí)數(shù)是女孩的兩倍,已知男孩走了27級(jí)到達(dá)扶梯頂部,而女孩走了18級(jí)到達(dá)扶梯頂部(設(shè)男孩、女孩每次只踏—級(jí)).問(wèn):

  (1)扶梯露在外面的部分有多少級(jí)?

  (2)如果扶梯附近有一從二樓到一樓的樓梯,樓梯的級(jí)數(shù)和扶梯的級(jí)數(shù)相等,兩孩子各自到扶梯頂部后按原速度再下樓梯,到樓梯底部再乘扶梯(不考慮扶梯與樓梯間距離)則男孩第一次追上女孩時(shí)走了多少級(jí)臺(tái)階?

  5.某化肥廠庫(kù)存三種不同的混合肥,第一種 含磷60%,鉀40%,第二種含鉀10%,氮90%;第三種含鉀50%,磷20%,氮30%,現(xiàn)將三種肥混合成含氮45%的混合肥100?(每種肥都必須取),試問(wèn)在這三種不同混合肥的不同取量中,新混合肥含鉀的取值范圍.

  6.(黃岡競(jìng)賽題)有麥田5塊A、B、C、D、E,它們的產(chǎn)量,(單位:噸)、交通狀況和每相鄰兩塊麥田的距離如圖21-2所示,要建一座永久性打麥場(chǎng),這5塊麥田生產(chǎn)的麥子都在此打場(chǎng).問(wèn)建在哪快麥田上(不允許建在除麥田以外的其他地方)才能使總運(yùn)輸量最小?圖中圓圈內(nèi)的數(shù)字為產(chǎn)量,直線段上的字母a、b、d表示距離,且b < a

  多邊形的邊角與對(duì)角線

  j.Co M

  第十四講 多邊形的邊角與對(duì)角線

  邊、角、對(duì)角線是多邊形中最基本的概念,求多邊形的邊數(shù) 、內(nèi)外角度數(shù)、對(duì)角線條數(shù)是解與多邊形相關(guān)的基本問(wèn)題,常用到三角形內(nèi)角和、多邊形內(nèi)、外角和定理、不等式、方程等知識(shí).

  多邊形 的內(nèi)角和定理反映出一定的規(guī)律性:(n-2)×180°隨n的變化而變化;而多邊形的外角和定理反映出更本質(zhì)的規(guī)律;360°是一個(gè)常數(shù),把內(nèi)角問(wèn)題轉(zhuǎn)化為外角問(wèn)題,以靜制動(dòng)是解多邊形有關(guān)問(wèn)題的常用技巧.

  將多邊形問(wèn)題轉(zhuǎn)化為三角形問(wèn)題來(lái)處理是解多邊形問(wèn)題的基本策略,連對(duì)角線或向外補(bǔ)形、對(duì)內(nèi)分割是轉(zhuǎn)化的常用方法,從凸 邊形的一個(gè)頂點(diǎn)引出的對(duì)角線把 凸 邊形分成 個(gè)多角形,凸n邊形一共可引出 對(duì)角線.

  例題求解

  【例1】在一個(gè)多邊形中,除了兩個(gè)內(nèi)角外,其余內(nèi)角之和為20xx°,則這個(gè)多邊形的邊數(shù)是 .

  (江蘇省競(jìng)賽題)

  思路點(diǎn)撥 設(shè)除去的角為°,y°,多邊形的邊數(shù) 為 ,可建立關(guān)于x、y的不定方程;又0°

  鏈接 世界上的萬(wàn)事萬(wàn)物是一個(gè)不斷地聚合和分裂的過(guò)程,點(diǎn)是幾何學(xué)最原始的概念,點(diǎn)生線、線生面、面生體,幾何元素的聚合不斷產(chǎn)生新的圖形,另一方面,不斷地分割已有的圖形可得到新的幾何圖形,發(fā)現(xiàn)新的幾何性質(zhì),多邊形可分成三角形,三角形可以合成其他

  一些幾何圖形.

  【例2】 在凸10邊形的所有內(nèi)角中,銳角的個(gè)數(shù)最多是( )

  A.0 B.1 C.3 D.5

  (全國(guó)初中數(shù)學(xué)競(jìng)賽題)

  思路點(diǎn)撥 多邊形的內(nèi)角和是隨著多邊形的邊數(shù)變化而變化的,而外角和卻總是不變的,因此,可把內(nèi)角為銳角的個(gè)數(shù)討論轉(zhuǎn)化為 外角為鈍角的個(gè)數(shù)的探討.

  【例3】 如圖,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若將此三角形沿AD剪開(kāi)成為兩個(gè)三角形,在平面上把這兩個(gè)三角形拼成一個(gè)四邊形,你能拼出所有的不同形狀的四邊形嗎?畫(huà)出所拼四邊形的示意圖(標(biāo)出圖中直角),并分別寫(xiě)出所拼四邊形的對(duì)角線的長(zhǎng).

  (烏魯木齊市中考題)

  思路點(diǎn)撥 把動(dòng)手操作與合情想象相結(jié)合 ,解題的關(guān)鍵是能注意到重合的邊作為四邊形對(duì)角線有不同情形.

  注 教學(xué)建模是當(dāng)今教學(xué)教育、考試改革最熱門(mén)的一個(gè)話題,簡(jiǎn)單地說(shuō),“數(shù)學(xué)建!本褪峭ㄟ^(guò)數(shù)學(xué)化(引元、畫(huà)圖等)把實(shí)際問(wèn)題特化為一個(gè)數(shù)學(xué)問(wèn)題,再運(yùn)用相應(yīng)的數(shù)學(xué)知識(shí)方法(模型)解決問(wèn)題.

  本例通過(guò)設(shè)元,把“沒(méi)有重疊、沒(méi)有空隙”轉(zhuǎn)譯成等式,通過(guò)不定方程求解.

  【例4】 在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說(shuō),使用給定的某些正多邊形,能夠拼成一個(gè)平面圖形,既不留下一絲空白,又不互相重疊(在幾何里叫做平面鑲嵌),這顯然與正多邊形的內(nèi)角大小有關(guān),當(dāng)圍繞一點(diǎn)拼在一起的幾個(gè)多邊形的內(nèi)角加在一起恰好組成一個(gè)周角(360°)時(shí),就拼成了一個(gè)平面圖形.

  (1)請(qǐng)根據(jù)下列圖形,填寫(xiě)表中空格:

  (2)如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個(gè)平面圖形?

  (3)從正三角形、正四邊形,正六邊形中選一種,再在其他正多邊形中選一種,請(qǐng)畫(huà)出用這兩種不同的正多邊形鑲嵌成的一個(gè)平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面 圖形?說(shuō)明你的理由.

  (陜西省中考題)

  思路點(diǎn)撥 本例主要研究?jī)蓚(gè)問(wèn)題:①如果限用一種正多邊形鑲嵌,可選哪些正多邊形;②選用兩種正多邊形鑲嵌,既具有開(kāi)放性,又具有探索性.假定正n邊形滿足鋪砌要求,那么在它的頂點(diǎn)接合的地方,n個(gè)內(nèi)角的和為360°,這樣,將問(wèn)題的討論轉(zhuǎn)化為求不定方程的正整數(shù)解.

  【例5】 如圖,五邊形ABCDE的每條邊所在直線沿該邊垂直方向向外平移4個(gè)單位,得到新的五邊形A'B'C'D'E'.

 。1)圖中5塊陰影部分即四邊形AHA'G、BFB'P、COC'N、DMD'L、EKE'I能拼成一個(gè)五邊形嗎?說(shuō)明理由.

  (2)證明五邊形A'B'C'D'E'的周長(zhǎng)比五邊形ABCD正的周長(zhǎng)至少增加25個(gè)單位.

  (江蘇省競(jìng)賽題)

  思路點(diǎn)撥 (1)5塊陰影部分要能拼成一個(gè)五邊形須滿足條件:,A'GB'; B'PC'; C'ND';D'LE';E'IA'三點(diǎn)分別共線;∠1+∠2+∠3+∠4+∠5=360°;(2)增加的周長(zhǎng)等于A'H+A'G+B'F+B'P+C'O+C'N+D'M+D'L+E'K+E'I,用圓的周長(zhǎng)逼近估算.

  1.如圖,用硬紙片剪一個(gè)長(zhǎng)為16cm、寬為12cm的長(zhǎng)方形,再沿對(duì)角線把它分成兩個(gè)三角形,用這兩個(gè)三角形可拼出各種三角形和四邊形來(lái),其中周長(zhǎng)最大的是 ?,周長(zhǎng)最小的是 cm.

  (選6《莢國(guó)中小學(xué)數(shù)學(xué)課程標(biāo)準(zhǔn)》)

  2.如圖,∠1+∠2+∠3+∠4+∠5+∠6= .

  3.如圖,ABCD是凸四邊形,AB=2,BC=4,CD=7,則線段AD的取值范圍是 .

  4.用黑白兩種顏色的正六邊形地面磚按如下所示的規(guī)律,拼成若干個(gè)圖案:

  (1)第4個(gè)圖案中有白色地面磚 塊;

  (2)第n個(gè)圖案中有白色地面磚 塊.

  (江西省中考題)

  5.凸n邊形中有且僅有兩個(gè)內(nèi)角為鈍角,則n的最大值是( )

  A.4 B.5 C. 6 D.7

  ( “希望杯”邀請(qǐng)賽試題)

  6.一個(gè)凸多邊 形的每一內(nèi)角都等于140°,那么,從這個(gè)多邊形的一個(gè)頂點(diǎn)出發(fā)的對(duì)角線的條數(shù)是( )

  A.9條 B.8條 C.7條 D. 6條

  7.有一個(gè)邊長(zhǎng)為4m的正六邊形客廳,用邊長(zhǎng)為50cm的正三角形瓷磚鋪滿,則需要這種瓷磚( )

  A.216塊 B.288塊 C.384塊 D.512塊

  ( “希望杯”邀請(qǐng)賽試題)

  8.已知△ABC是邊長(zhǎng)為2的等邊三角形,△ACD是一個(gè)含有30°角的直角三角形,現(xiàn)將△ABC和△ACD拼成一個(gè)凸四邊形ABCD.

 。1))畫(huà)出四邊形ABCD;

  (2)求出四邊形ABCD的對(duì)角線BD的長(zhǎng).

  (上海市閔行區(qū)中考題)

  9.如圖,四邊形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度數(shù).

  (北京市競(jìng)賽題)

  10.如圖,在五邊形A1A2A3A4A5中,Bl是A1的對(duì)邊A3A4的中點(diǎn),連結(jié)A1B1,我們稱A1B1是這個(gè)五邊形的一條中對(duì)線,如果五邊形的每條中對(duì)線都將五邊形的面積分成相等的兩部分,求證:五邊形的每條邊都有一條對(duì)角線和它平行.

  (安徽省中考題)

  11.如圖,凸四邊形有 個(gè);∠A+∠B+∠C+∠D+∠E+∠F+∠G= .

  (重慶市競(jìng)賽題)

  12.如圖,延長(zhǎng)凸五邊形A1A2A3A4A5的各邊相交得到5個(gè)角,∠B1,∠B2,∠B3,∠B4,∠B5,它們的和等于 ;若延長(zhǎng)凸n邊形(n≥5)的各邊相交,則得到的n個(gè)角的和等于 .

  ( “希望杯”邀請(qǐng)賽試題)

  13.設(shè)有一個(gè)邊長(zhǎng)為1的正三角形,記作A1(圖a),將每條邊三等分,在中間的線段上向外作正三角形,去掉中間的線段后所得到的圖形記作A 2(圖b),再將每條邊三等分,并重復(fù)上述過(guò)程,所得到的圖形記作A3(圖c);再將每條邊三 等分,并重復(fù)上述過(guò)程,所得到的圖形記作A4,那么,A4的周長(zhǎng)是 ;A4這個(gè)多邊形的面積是原三角形面積的 倍.

  (全國(guó)初中數(shù)學(xué)聯(lián)賽題)

  14.如圖,六邊形ABCDEF中,∠A=∠B=∠C=∠D=∠E=∠F,且AB+BC=11,F(xiàn)A—CD=3,則BC+DC= . (北京市競(jìng)賽題)

  15.在一個(gè)n邊形中,除了一個(gè)內(nèi)角外,其余(n一1)個(gè)內(nèi)角的和為2750°,則這個(gè)內(nèi)角的度數(shù)為( )

  A.130° D.140° C .105° D.120°

  16.如圖,四邊形ABCD中,∠BAD=90°,AB=BC=2 ,AC=6,AD=3,則CD的長(zhǎng)為( )

  A.4 B.4 C.3 D. 3 (江蘇省競(jìng)賽題)

  注 按題中的方法'不斷地做下去,就會(huì)成為下圖那樣的圖形,它的邊界有一個(gè)美麗的名稱——雪花曲線或 科克曲線(瑞典數(shù)學(xué)家),這類圖形稱為“分形”,大量的物理、生物與數(shù)學(xué)現(xiàn)象都導(dǎo)致分形,分形是新興學(xué)科“混沌”的重要分支.

  17.如圖,設(shè)∠CGE=α,則∠A+∠B+∠C+∠D+∠C+∠F=( )

  A.360°一α B.270°一αC.180°+α D.2α

  (山東省競(jìng)賽題)

  18.平面上有A、B,C、D四點(diǎn),其中任何三點(diǎn)都不在一直線上,求證:在△ABC、△ABD、△ACD、△BDC中至少有一個(gè)三角形的內(nèi)角不超過(guò)45°.

  19.一塊地能被n塊相同的正方形地磚所覆蓋,如果用較小的相同正方形地磚,那么需n+76塊這樣的地磚才能覆蓋該塊地,已知n及地磚的邊長(zhǎng)都是整數(shù),求n. (上海市競(jìng)賽題)

  20.如圖,凸八邊形ABCDEFGH的8 個(gè)內(nèi)角都相等,邊AB、BC、CD、DE、EF、FG的長(zhǎng)分別為7,4,2,5,6,2,求該八邊形的周長(zhǎng).

  21.如圖l是一張可折疊的鋼絲床的示意圖,這是展開(kāi)后支撐起來(lái)放在地面上的情況,如果折疊起來(lái),床頭部分被折到了床面之下(這里的A、B、C、D各點(diǎn)都是活動(dòng)的),活動(dòng)床頭是根據(jù)三角形的穩(wěn)定性和四邊形的不穩(wěn)定性設(shè)計(jì)而成的,其折疊過(guò)程可由圖2的變換反映出來(lái).

  如果已知四邊形ABCD中,AB=6,CD=15,那么BC、AD取多長(zhǎng)時(shí),才能實(shí)現(xiàn)上述的折疊變化?

  (淄博市中考題)

  22.一個(gè)凸n邊形由若干個(gè)邊長(zhǎng)為1的正方形或正三角形無(wú)重疊、無(wú)間隙地拼成,求此凸n邊形各個(gè)內(nèi)角的大小,并畫(huà)出這樣的 凸n邊形的草圖.

  圖形的平移與旋轉(zhuǎn)

  前蘇聯(lián)數(shù)學(xué)家亞格龍將幾何學(xué)定義為:幾何學(xué)是研究幾何圖形在運(yùn)動(dòng)中不變的那些性質(zhì)的學(xué)科.

  幾何變換是指把一個(gè)幾何圖形Fl變換成另一個(gè)幾何圖形F2的方法,若僅改變圖形的位置,而不改變圖形的形狀和大小,這種變換稱為合同變換,平移、旋轉(zhuǎn)是常見(jiàn)的合同變換.

  如圖1,若把平面圖形Fl上的各點(diǎn)按一定方向移動(dòng)一定距離得到圖形F2后,則由的變換叫平移變換.

  平移前后的圖形全等,對(duì)應(yīng)線段平行且相等,對(duì)應(yīng)角相等.

  如圖2,若把平面圖Fl繞一定點(diǎn)旋轉(zhuǎn)一個(gè)角度得到圖形F2,則由Fl到F2的變換叫旋轉(zhuǎn)變換,其中定點(diǎn)叫旋轉(zhuǎn)中心,定角叫旋轉(zhuǎn)角.

  旋轉(zhuǎn)前后的圖形全等,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.

  通過(guò)平移或旋轉(zhuǎn),把部分圖形搬到新的位置,使問(wèn)題的條件相對(duì)集中,從而使條件與待求結(jié)論之間的關(guān)系明朗化,促使問(wèn)題的解決.

  注 合同變換、等積變換、相似變換是基本的幾何變換.等積變換,只是圖形在保持面積不變情況下的形變'而相似變換,只保留線段間的比例關(guān)系,而線段本身的大小要改變.

  例題求解

  【例1】如圖,P為正方形ABCD內(nèi)一點(diǎn),PA:PB:PC=1:2:3,則∠APD= .

  思路點(diǎn)撥 通過(guò)旋轉(zhuǎn),把PA、PB、PC或關(guān)聯(lián)的線段集中到同一個(gè)三角形.

  【例2】 如圖,在等腰Rt△ABC的斜邊AB上取兩點(diǎn)M,N,使∠MCN=45°,記AM=m,MN= x,DN=n,則以線 段x、m、n為邊長(zhǎng)的三角形的形狀是( )

  A.銳角三角形 B.直角三角形

  C.鈍角三角形 D.隨x、m、n的變化而改變

  思路點(diǎn)撥 把△ACN繞C點(diǎn)順時(shí)針旋轉(zhuǎn)45°,得△CBD,這樣∠ACM+∠BCN=45°就集中成一個(gè)與∠MCN相等的角,在一條直線上的m、 x、n 集中為△DNB,只需判定△DNB的形狀即可.

  注 下列情形,常實(shí)施旋轉(zhuǎn)變換:

  (1)圖形中出現(xiàn)等邊三角形或正方形,把旋轉(zhuǎn)角分別定為60°、90°;

  (2)圖形中有線段的中點(diǎn),將圖形繞中點(diǎn)旋轉(zhuǎn)180°,構(gòu)造中心對(duì)稱全等三角形;

  (3)圖形中出現(xiàn)有公共端點(diǎn)的線段,將含有相等線段的圖形繞公共端點(diǎn),旋轉(zhuǎn)兩相等線段的夾角后與另一相等線段重合.

  【例3】 如圖,六邊形ADCDEF中,AN∥DE,BC∥EF,CD∥AF,對(duì)邊之差BC-EF=ED?AB=AF?CD>0,求證:該六邊形的各角相等.

  (全俄數(shù)學(xué)奧林匹克競(jìng)賽題)

  思路點(diǎn)撥 設(shè)法將復(fù)雜的條件BC?FF=ED?AB=AF?CD>0用一個(gè)基本圖形表示,題設(shè)中有平行條件,可考慮實(shí)施平移變換.

  注 平移變換常與平行線相關(guān),往往要用到平行四邊形的性質(zhì),平移變換可將角,線段移到適當(dāng)?shù)奈恢,使分散的條件相對(duì)集中,促使問(wèn)題的解決.

  【例4】 如圖,在等腰△ABC的兩腰AB、AC上分別取點(diǎn)E和F,使AE=CF.已知BC=2,求證:EF≥1. (西安市競(jìng)賽題)

  思路點(diǎn)撥 本例實(shí)際上就是證明2EF≥BC,不便直接證明,通過(guò)平移把BC與EF集中到同一個(gè)三角形中.

  注 三角形中的不等關(guān)系,涉及到以下基本知識(shí):

  (1)兩點(diǎn)間線段最短,垂線段最短;

  (2)三角形兩邊之和大于第三邊,兩邊之差小于第三邊;

  (3)同一個(gè)三角形中大邊對(duì)大角(大角對(duì)大邊),三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角.

  【例5】 如圖,等邊△ABC的邊長(zhǎng)為 ,點(diǎn)P是△ABC內(nèi)的一點(diǎn),且PA2+PB2=PC2,若PC=5,求PA、PB的長(zhǎng). (“希望杯”邀請(qǐng)賽試題)

  思路點(diǎn)撥 題設(shè)條件滿足勾股關(guān)系PA2+PB2=PC2的三邊PA、PB、PC不構(gòu)成三角形,不能直接應(yīng)用,通過(guò)旋轉(zhuǎn)變換使其集中到一個(gè)三角形中,這是解本例的關(guān) 鍵.

  學(xué)歷訓(xùn)練

  1.如圖,P是正方形ABCD內(nèi)一點(diǎn),現(xiàn)將△ABP繞點(diǎn)B顧時(shí)針?lè)较蛐D(zhuǎn)能與△CBP′重合,若PB=3,則PP′= .

  2.如圖,P是等邊△ABC內(nèi)一點(diǎn),PA=6,PB=8,PC=10,則∠APB .

  3.如圖,四邊形ABC D中,AB∥CD,∠D=2∠B,若AD=a,AB=b,則CD的長(zhǎng)為 .

  4.如圖,把△ABC沿AB邊平移到△A'B'C'的位置,它們的重疊部分(即圖中陰影部分)的面積是△ABC的面積的一半,若AB= ,則此三角形移動(dòng)的距離AA'是( )

  A. B. C.l D. (20xx年荊州市中考題)

  5.如圖,已知△ABC中,AB=AC,∠BAC=90°,直角EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE、PF分別交AB、AC于點(diǎn)C、F,給出以下四個(gè)結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③S四邊形AEPF= S△ABC;④EF=AP.

  當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A、B重合),上述結(jié)論中始終正確的有( )

  A.1個(gè) B.2個(gè) C .3個(gè) D.4個(gè)

  (20xx年江蘇省蘇州市中考題)

  6.如圖,在四邊形 ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于E, S四邊形ABCD d=8,則BE的長(zhǎng)為( )

  A.2 B.3 C . D. (20xx年武漢市選拔賽試題)

  7.如圖,正方形ABCD和正方形EFGH的邊長(zhǎng)分別為 和 ,對(duì)角線BD、FH都在直線 上,O1、O2分別為正方形的中心,線段O1O2的長(zhǎng)叫做兩個(gè)正方形的中心距,當(dāng)中心O2在直線 上平移時(shí),正方形EFGH也隨之平移,在平移時(shí)正方形EFGH的形狀、大小沒(méi)有變化.

  (1)計(jì)算:O1D= ,O2F= ;

  (2)當(dāng)中心O2在直線 上平移到兩個(gè)正方形只有一個(gè)公共點(diǎn)時(shí),中心距O1O2= ;

  (3)隨著中心O2在直線 上平移,兩個(gè)正方形的公共點(diǎn)的個(gè)數(shù)還有哪些變化?并求出相對(duì)應(yīng)的中心距的值或取值范圍(不必寫(xiě)出計(jì)算過(guò)程). (徐州市中考題)

  8.圖形的操做過(guò)程(本題中四個(gè)矩形的水平方向的邊長(zhǎng)均為a,豎直 方向的邊長(zhǎng)均為b):

  在圖a中,將線段A1A2向右平移1個(gè)單位到B1B2,得到封閉圖形A1A2B1B2(即陰影部分);

  在圖b中, 將折線A1A2A3向右平移1個(gè)單位到B1B2B3,得到封閉圖形A1A2A3B1B2B3(即陰影部分);

 。1)在圖c中,請(qǐng)你類似地畫(huà)一條有兩個(gè)折點(diǎn)的折線,同樣向右平移1個(gè)單位,從而得到一個(gè)封閉圖形,并用斜線畫(huà)出陰影;

 。2)請(qǐng)你分別寫(xiě)出上述三個(gè)圖形中除去陰影部分后剩余部分的面積:S1= ,,S2= ,S3= ;

 。3)聯(lián)想與探索:

  如圖d,在一塊矩形草地上,有一條彎曲的柏油小路(小路任何地方的水平寬度都是1個(gè)單位),請(qǐng)你猜想空白部分表示的草地面積是多少?并說(shuō)明你的猜想是正確的.

  (20xx年河北省中考題)

  9.如圖,已知點(diǎn)C為線段AB上一點(diǎn),△ACM、△CBN是等邊三角形,求證:AN=BM.

  說(shuō)明及要求:本題是《幾何》第二冊(cè)幾15中第13題,現(xiàn)要求:

  (1)將△ACM繞C點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)180°,使A點(diǎn)落在CB上,請(qǐng)對(duì)照原題圖在圖中畫(huà)出符合要求的圖形(不寫(xiě)作法,保留作圖痕跡).

  (2)在①所得的圖形中,結(jié)論“AN=BM”是否還成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

  (3)在①得到的圖形中,設(shè)MA的延長(zhǎng)線與BN相交于D點(diǎn),請(qǐng)你判斷△ABD與四邊形MDNC的形狀,并證明你的結(jié)論.

  10.如圖,在Rt△ABC中,∠A=90°,AB=3cm,AC=4cm,以斜邊BC上距離B點(diǎn)3cm的點(diǎn)P為中心,把這個(gè)三角形按逆時(shí)針?lè)较蛐D(zhuǎn)90°至△DEF,則旋轉(zhuǎn)前后兩個(gè)直角三角形重疊部分的面積是 cm2.

  11.如圖,在梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,點(diǎn)E在DC上,AE、BC的延長(zhǎng)線交于點(diǎn)F,若AE=10,則S△ADE+S△CEF的值是 .

  (紹興市中考題)

  12.如圖,在△ABC中,∠BAC=120°,P是△ABC內(nèi)一點(diǎn),則PA+PB+PC與AB+AC的大小關(guān)系是( )

  A.PA+PB+PC>AB+AC B.PA+PB+PCC. PA+PB+PC=AB+AC D.無(wú)法確定

  13.如圖,設(shè)P到等邊三角形ABC兩頂點(diǎn)A、B的距離分別為2、3,則PC所能達(dá)到的最大值為( )

  A. B. C .5 D.6

  (20xx年武漢市選拔賽試題)

  14.如圖,已知△ABC中,AB=AC,D為AB上一點(diǎn),E為AC 延長(zhǎng)線上一點(diǎn),BD=CE,連DE,求證:DE>DC.

  15.如圖,P為等邊△ABC內(nèi)一點(diǎn),PA、PB、PC的長(zhǎng)為正整數(shù),且PA2+PB2=PC2,設(shè)PA=m,n為大于5的實(shí)數(shù),滿 ,求△ABC的面積.

  16.如圖,五羊大學(xué)建立分校,校本部與分校隔著兩條平行的小河, ∥ 表示小河甲, ∥ 表示小河乙,A為校本部大門(mén),B為分校大門(mén),為方便人員來(lái)往,要在兩條小河上各建一座橋,橋面垂直于河岸.圖中的尺寸是:甲河寬8米,乙河寬10米,A到甲河垂直距離為40米,B到乙河垂直距離為20米,兩河距離100米,A、B兩點(diǎn)水平距離(與小河平行方向)120米,為使A、B兩點(diǎn)間來(lái)往路程最短,兩座橋都按這個(gè)目標(biāo)而建,那么,此時(shí)A、D兩點(diǎn)間來(lái)往的路程是多少米? (“五羊杯”競(jìng)賽題)

  17.如圖,△ABC是等腰直角三角形,∠C=90°,O是△ABC內(nèi)一點(diǎn),點(diǎn)O到△ABC各邊的距離都等于1,將△ABC繞 點(diǎn)O順時(shí)針旋轉(zhuǎn)45°,得△A1BlC1 ,兩三角形公共部分為多邊形KLMNPQ.

  (1)證明:△AKL、△BMN、△CPQ都是等腰直角三角形;

  (2)求△ABC與△A1BlC1公共部分的面積. (山東省競(jìng)賽題)

  18.(1)操作與證明:如圖1,O是邊長(zhǎng)為a的正方形ACBD的中心,將一塊半徑足夠長(zhǎng),圓心角為直角的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn),求證:正方形ABCD的邊被紙板覆蓋部分的總長(zhǎng)度為定值.

  (2)嘗試與思考:如圖2,將一塊半徑足夠長(zhǎng)的扇形紙板的圓心放在邊長(zhǎng)為a的正三角形或正五邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn), 當(dāng)扇形紙板的圓心角為 時(shí),正三角形的邊被紙板覆蓋部分的總長(zhǎng)度為定值a;當(dāng)扇形紙板的圓心角為 時(shí),正五邊形的邊被紙板覆蓋部分的總長(zhǎng)度也為定值a.

  (3)探究與引申:一般地,將一塊半徑足夠長(zhǎng)的扇形紙板的圓心放在邊長(zhǎng)為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為 時(shí),正n邊形的邊被紙板覆蓋部分 的總長(zhǎng)度為定值a;這時(shí)正n邊形被紙板覆蓋部分的面積是否也為定值?若為定值,寫(xiě)出它與正n邊形面積S之間的關(guān)系;若不是定值,請(qǐng)說(shuō)明理由.

平行四邊形教案 篇9

  教學(xué)要求:

  1.鞏固平行四邊形的面積計(jì)算公式,能比較熟練地運(yùn)用平行四邊形面積的計(jì)算公式解答有關(guān)應(yīng)用題。

  2.養(yǎng)成良好的審題習(xí)慣。

  3.培養(yǎng)同學(xué)們分析問(wèn)題、解決問(wèn)題的能力。

  教學(xué)重點(diǎn):

  運(yùn)用所學(xué)知識(shí)解答有關(guān)平行四邊形面積的應(yīng)用題。

  教具準(zhǔn)備:

  卡片

  教學(xué)過(guò)程:

  一、基本練習(xí)

  1.口算。

  2.平行四邊形的面積是什么?它是怎樣推導(dǎo)出來(lái)的?

  3.口算下面各平行四邊形的面積。

 。1)底12米,高7米;

  (2)高13分米,底6分米;

  (3)底2.5厘米,高4厘米

  二、指導(dǎo)練習(xí)

  1.補(bǔ)充題:一塊平行四邊形的麥地底長(zhǎng)250米,高是78米,它的面積是多少平方米?

 。1)生獨(dú)立列式解答,集體訂正。

 。2)如果問(wèn)題改為:每公頃可收小麥7000千克,這塊地共可收小麥多少千克?

  ①必須知道哪兩個(gè)條件?

 、谏(dú)立列式,集體講評(píng):

  先求這塊地的.面積:25078010000=1.95公頃,

  再求共收小麥多少千克:70001.95=13650千克

 。3)如果問(wèn)題改為:一共可收小麥58500千克,平均每公頃可收小麥多少千克?又該怎樣想?

  與(2)比較,從數(shù)量關(guān)系上看,什么相同?什么不同?

  討論歸納后,生自己列式解答:58500(250781000)

 。4)小結(jié):上述幾題,我們根據(jù)一題多變的練習(xí),尤其是變式后的兩道題,都是要先求面積,再變換成地積后才能進(jìn)入下一環(huán)節(jié),否則就會(huì)出問(wèn)題。

  2.練習(xí)第6題:下土重量各平行四邊形的面積相等嗎?為什么?每個(gè)平行四邊形的面積是多少?

 。1)你能找出圖中的兩個(gè)平行四邊形嗎?

 。2)他們的面積相等嗎?為什么?

 。3)生計(jì)算每個(gè)平行四邊形的面積。

 。4)你可以得出什么結(jié)論呢?(等底等高的平行四邊形的面積相等。)

  3.練習(xí)第10題:已知一個(gè)平行四邊形的面積和底,求高。

  分析與解答:因?yàn)槠叫兴倪呅蔚拿娣e=底高,如果已知平行四邊形的面積是28平方米,底是7米,求高就用面積除以底就可以了。

  三、課堂練習(xí)

  第7題。

  四、小結(jié)

  本節(jié)課我們主要學(xué)習(xí)了哪些知識(shí)?你掌握平行四邊形的面積計(jì)算公式了嗎?

【平行四邊形教案】相關(guān)文章:

平行四邊形教案08-27

平行四邊形面積教案02-09

平行四邊形的面積教案01-17

《平行四邊形的面積》教案01-02

《平行四邊形的認(rèn)識(shí)》教案03-15

《平行四邊形的面積》教案06-23

《平行四邊形的認(rèn)識(shí)》教案07-09

平行四邊形的認(rèn)識(shí)教案07-30

精選平行四邊形教案八篇05-22

精選平行四邊形教案20篇10-19