- 相關推薦
滬教版四年級上冊《運算定律--交換律》數(shù)學教案
作為一名專為他人授業(yè)解惑的人民教師,時常會需要準備好教案,教案有助于學生理解并掌握系統(tǒng)的知識。那么你有了解過教案嗎?以下是小編幫大家整理的滬教版四年級上冊《運算定律--交換律》數(shù)學教案,僅供參考,希望能夠幫助到大家。
教學內(nèi)容上海市九年義務教育課本四年級第一學期第60——61頁
教學目標
1、在創(chuàng)設的情境中體會理解加法交換律、乘法交換律并會用字母式表達。
2、通過練習學會運用交換律對加法和乘法的計算結果進行驗算,培養(yǎng)學生自覺檢驗計算結果的習慣。
3、感悟運用加法交換律、乘法交換律使一些運算更簡便。
教學重點
理解并掌握加法、乘法交換律(用字母表示)。
教學難點
會運用加法、乘法交換律解決一些計算問題。
教學過程:
一、理解交換
1、教師和學生交換鉛筆。
2、教師左右手交換練習冊。
3、教師和學生互相交換位置。
4、學生互相交換位置。
5、師:其實,像這樣的例子,在生活中經(jīng)常碰到。剛才我們做了什么?發(fā)現(xiàn)什么?(交換后位置變了,東西沒變)我們在生活中經(jīng)常會碰到交換,數(shù)學中也有交換,今天我們一起來研究運算定律。
二、加法交換律
1、規(guī)律的發(fā)現(xiàn)
。1)創(chuàng)設情境,引導發(fā)現(xiàn)
、俪鍪局黝}圖,向學生介紹“愛心助學大行動”,某商店為幫助貧困山區(qū)學生特別舉行義賣活動把營業(yè)額全部獻給希望小學。看,小胖和小亞也來幫忙了。
、诟鶕(jù)問題列式計算
桌上共有幾罐果汁?
8+18=26
18+8=26
、垡驗橛嬎憬Y果相等,所以兩個算式可以用“=”連接
8+18=18+8
、苣氵可以提出類似的問題嗎?
1月10日共銷售果汁多少罐?
板書:400+520=520+400
1月11日共銷售果汁多少罐?
板書:550+450=450+550
⑤其他的兩組算式我們也可以用“=”連接嗎?為什么?這些算式中什么變了,什么沒變?為什么和不變?
還能舉幾個這樣的例子嗎?
根據(jù)學生回答板書。
⑥像這樣的例子舉得完嗎?
能不能用什么方法把所有的例子都包括進去呢?(學生獨立寫,交流)
我們通常用字母a和b表示加法交換律:a+b=b+a
⑦像這種在加法中交換兩個加數(shù)的關系,和不變的規(guī)律是一條重要的規(guī)律,你能幫它起個名嗎?(揭示:加法交換律)
⑧說一說,什么叫加法交換律。
補充板書:兩個數(shù)相加,交換加數(shù)的位置,和不變。
2、根據(jù)加法交換律發(fā)現(xiàn)乘法交換律
、倏吹健凹臃ń粨Q律”這個名稱,你想到了什么?
、谂e例驗證。
師:除了加法中有交換律,還有什么運算中也有這樣的規(guī)律呢?
大膽猜想可能還有什么交換律,再舉例驗證。
學生獨立驗證并填寫學習單
我猜想:可能還有交換律,你可以用寫一寫和畫一畫的方法舉例驗證。
③反饋交流。
根據(jù)匯報板書幾個等式
師:同學們舉的例子中有沒有交換因數(shù)位置積不相等的例子?(沒有)看來乘法交換律是存在的。
A、概括:發(fā)現(xiàn)了什么交換律?什么變了,什么沒變?可以用字母表示?
B、說一說,什么是乘法交換律?
C、加法交換律和乘法交換律有什么共同的特征?
D、其他的運算有這個特征嗎?
E、交換律的特征是什么?(交換兩個加數(shù)或因數(shù)的位置,結果不變)
三、鞏固練習。
1、判斷,下面的式子符合交換律嗎?如果符合,說說是什么交換律?
。1)43+0=0+43()
。2)136×50=50×136()
(3)2×2=2+2()
。4)★+▲=▲+●()
(5)v×t=v×t()
想一想,我們還在哪里用過交換律?
。1)驗算
師:你能用交換律進行驗算嗎?。
。2)“34×124”可以怎樣計算?
四、課堂總結
今天這節(jié)課哪些詞給你的印象最深?(交換)
交換是事物的位置發(fā)生變化,但變化中存在這不變,你能抓住“變與不變”來總結今天學習的內(nèi)容嗎?
五、課堂延伸。
下面的事物交換后,分別會得到怎樣的結果?
1、交換蘋果。
2、交換方法。
我的一種方法你的一種方法
六、練習
1、運用交換律填空
52×( )=976×()
34+78+66=34+()+( )
。ǎ+△=()+□
( ) ×☆×○=( ) ×△×()
42○55=55○42
2、比一比,誰列出的算式多:
1)一次小隊活動中,小胖她們分工統(tǒng)計了世博會上一個小時中參觀下列三個場館的人數(shù)。(要求:根據(jù)問題只列式,不計算)
問:這一個小時內(nèi),參觀三個場館的人數(shù)一共有多少人?
臺灣館:358人;香港館:537人;澳門館:442人。
板書6個算式。
這些算式,三個數(shù)相加,交換加數(shù)的位置,結果不變。
2)算一算,共有多少個小正方體?
板書設計:
運算定律————交換律
加法交換律:乘法交換律:
a+b=b+a a×b=b×a
【滬教版四年級上冊《運算定律--交換律》數(shù)學教案】相關文章:
滬教版四年級上冊《分數(shù)》數(shù)學教案11-20
滬教版三年級上冊《連乘、連除1》數(shù)學教案01-17
滬教版九年級上冊《沉船之前》教案11-11
滬教版四年級下冊《小數(shù)的加法》數(shù)學教案01-17
滬教版小學英語教案11-03
滬教版五年級上冊《用計算器計算》數(shù)學教案01-17