- 初三數(shù)學(xué)教案 推薦度:
- 相關(guān)推薦
(精品)初三數(shù)學(xué)教案
作為一位優(yōu)秀的人民教師,就難以避免地要準(zhǔn)備教案,編寫(xiě)教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。我們?cè)撛趺慈?xiě)教案呢?以下是小編為大家收集的初三數(shù)學(xué)教案,僅供參考,希望能夠幫助到大家。
初三數(shù)學(xué)教案1
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn)
使學(xué)生了解一個(gè)銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系。
。ǘ┠芰τ(xùn)練點(diǎn)
逐步培養(yǎng)學(xué)生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力。
。ㄈ┑掠凉B透點(diǎn)
培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神。
二、教學(xué)重點(diǎn)、難點(diǎn)
1、重點(diǎn):使學(xué)生了解一個(gè)銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系并會(huì)應(yīng)用。
2、難點(diǎn):一個(gè)銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關(guān)系的應(yīng)用。
三、教學(xué)步驟
(一)明確目標(biāo)
1、復(fù)習(xí)提問(wèn)
。1)、什么是∠A的正弦、什么是∠A的余弦,結(jié)合圖形請(qǐng)學(xué)生回答。因?yàn)檎摇⒂嘞业母拍钍茄芯勘菊n內(nèi)容的知識(shí)基礎(chǔ),請(qǐng)中下學(xué)生回答,從中可以了解教學(xué)班還有多少人不清楚的,可以采取適當(dāng)?shù)难a(bǔ)救措施。
。2)請(qǐng)同學(xué)們回憶30°、45°、60°角的正、余弦值(教師板書(shū))。
。3)請(qǐng)同學(xué)們觀察,從中發(fā)現(xiàn)什么特征?學(xué)生一定會(huì)回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個(gè)角的正弦值等于它們余角的余弦值”。
2、導(dǎo)入新課
根據(jù)這一特征,學(xué)生們可能會(huì)猜想“一個(gè)銳角的正弦(余弦)值等于它的余角的余弦(正弦)值!边@是否是真命題呢?引出課題。
。ǘ、整體感知
關(guān)于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系,是通過(guò)30°、45°、60°角的正弦、余弦值之間的關(guān)系引入的,然后加以證明。引入這兩個(gè)關(guān)系式是為了便于查“正弦和余弦表”,關(guān)系式雖然用黑體字并加以文字語(yǔ)言的證明,但不標(biāo)明是定理,其證明也不要求學(xué)生理解,更不應(yīng)要求學(xué)生利用這兩個(gè)關(guān)系式去推證其他三角恒等式。在本章,這兩個(gè)關(guān)系式的用處僅僅限于查表和計(jì)算,而不是證明。
。ㄈ┲攸c(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1、通過(guò)復(fù)習(xí)特殊角的三角函數(shù)值,引導(dǎo)學(xué)生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)熱情,使學(xué)生的'思維積極活躍。
2、這時(shí)少數(shù)反應(yīng)快的學(xué)生可能頭腦中已經(jīng)“畫(huà)”出了圖形,并有了思路,但對(duì)部分學(xué)生來(lái)說(shuō)仍思路凌亂。因此教師應(yīng)進(jìn)一步引導(dǎo):sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時(shí),學(xué)生結(jié)合正、余弦的概念,完全可以自己解決,教師要給學(xué)生足夠的研究解決問(wèn)題的時(shí)間,以培養(yǎng)學(xué)生邏輯思維能力及獨(dú)立思考、勇于創(chuàng)新的精神。
3、教師板書(shū):
任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。
sinA=cos(90°-A),cosA=sin(90°-A)。
4、在學(xué)習(xí)了正、余弦概念的基礎(chǔ)上,學(xué)生了解以上內(nèi)容并不困難,但是,由于學(xué)生初次接觸三角函數(shù),還不熟練,而定理又涉及余角、余函數(shù),使學(xué)生極易混淆。因此,定理的應(yīng)用對(duì)學(xué)生來(lái)說(shuō)是難點(diǎn)、在給出定理后,需加以鞏固。
已知∠A和∠B都是銳角,(1)把cos(90°-A)寫(xiě)成∠A的正弦。
(2)把sin(90°-A)寫(xiě)成∠A的余弦。
這一練習(xí)只能起到鞏固定理的作用。為了運(yùn)用定理,教材安排了例3.
。2)已知sin35°=0.5736,求cos55°;
(3)已知cos47°6′=0.6807,求sin42°54′。
。1)問(wèn)比較簡(jiǎn)單,對(duì)照定理,學(xué)生立即可以回答。(2)、(3)比(1)則更深一步,因?yàn)?1)明確指出∠B與∠A互余,(2)、(3)讓學(xué)生自己發(fā)現(xiàn)35°與55°的角,47°6′分42°54′的角互余,從而根據(jù)定理得出答案,因此(2)、(3)問(wèn)在課堂上應(yīng)該請(qǐng)基礎(chǔ)好一些的同學(xué)講清思維過(guò)程,便于全體學(xué)生掌握,在三個(gè)問(wèn)題處理完之后,將題目變形:
。2)已知sin35°=0.5736,則cos______=0.5736.
(3)cos47°6′=0.6807,則sin______=0.6807,以培養(yǎng)學(xué)生思維能力。
為了配合例3的教學(xué),教材中配備了練習(xí)題2.
。2)已知sin67°18′=0.9225,求cos22°42′;
。3)已知cos4°24′=0.9971,求sin85°36′。
學(xué)生獨(dú)立完成練習(xí)2,就說(shuō)明定理的教學(xué)較成功,學(xué)生基本會(huì)運(yùn)用。
教材中3的設(shè)置,實(shí)際上是對(duì)前二節(jié)課內(nèi)容的綜合運(yùn)用,既考察學(xué)生正、余弦概念的掌握程度,同時(shí)又對(duì)本課知識(shí)加以鞏固練習(xí),因此例3的安排恰到好處。同時(shí),做例3也為下一節(jié)查正余弦表做了準(zhǔn)備。
。ㄋ模┬〗Y(jié)與擴(kuò)展
1、請(qǐng)學(xué)生做知識(shí)小結(jié),使學(xué)生對(duì)所學(xué)內(nèi)容進(jìn)行歸納總結(jié),將所學(xué)內(nèi)容變成自己知識(shí)的組成部分。
2、本節(jié)課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關(guān)系,以及正弦、余弦的概念得出的結(jié)論:任意一個(gè)銳角的正弦值等于它的余角的余弦值,任意一個(gè)銳角的余弦值等于它的余角的正弦值。
四、布置作業(yè)
初三數(shù)學(xué)教案2
一、概念: 三、例1---------- 四、特殊角的正余弦值
------------- ------------------- -----------------------
二、范圍: ------------------ 五、例2 ------------
正弦和余弦(三)
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
使學(xué)生了解一個(gè)銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系.
(二)能力訓(xùn)練點(diǎn)
逐步培養(yǎng)學(xué)生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力.
(三)德育滲透點(diǎn)
培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神.
二、教學(xué)重點(diǎn)、難點(diǎn)
1.重點(diǎn):使學(xué)生了解一個(gè)銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系并會(huì)應(yīng)用.
2.難點(diǎn):一個(gè)銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關(guān)系的應(yīng)用.
三、教學(xué)步驟
(一)明確目標(biāo)
1.復(fù)習(xí)提問(wèn)
(1)、什么是∠A的正弦、什么是∠A的余弦,結(jié)合圖形請(qǐng)學(xué)生回答.因?yàn)檎、余弦的概念是研究本課內(nèi)容的知識(shí)基礎(chǔ),請(qǐng)中下學(xué)生回答,從中可以了解教學(xué)班還有多少人不清楚的,可以采取適當(dāng)?shù)难a(bǔ)救措施.
(2)請(qǐng)同學(xué)們回憶30°、45°、60°角的正、余弦值(教師板書(shū)).
(3)請(qǐng)同學(xué)們觀察,從中發(fā)現(xiàn)什么特征?學(xué)生一定會(huì)回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個(gè)角的正弦值等于它們余角的余弦值”.
2.導(dǎo)入新課
根據(jù)這一特征,學(xué)生們可能會(huì)猜想“一個(gè)銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題.
(二)、整體感知
關(guān)于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系,是通過(guò)30°、45°、60°角的正弦、余弦值之間的關(guān)系引入的,然后加以證明.引入這兩個(gè)關(guān)系式是為了便于查“正弦和余弦表”,關(guān)系式雖然用黑體字并加以文字語(yǔ)言的證明,但不標(biāo)明是定理,其證明也不要求學(xué)生理解,更不應(yīng)要求學(xué)生利用這兩個(gè)關(guān)系式去推證其他三角恒等式.在本章,這兩個(gè)關(guān)系式的用處僅僅限于查表和計(jì)算,而不是證明.
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1.通過(guò)復(fù)習(xí)特殊角的三角函數(shù)值,引導(dǎo)學(xué)生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)熱情,使學(xué)生的.思維積極活躍.
2.這時(shí)少數(shù)反應(yīng)快的學(xué)生可能頭腦中已經(jīng)“畫(huà)”出了圖形,并有了思路,但對(duì)部分學(xué)生來(lái)說(shuō)仍思路凌亂.因此教師應(yīng)進(jìn)一步引導(dǎo):sinA=cos(90°-A),cosA=sin(90°-A)(A是銳角)成立嗎?這時(shí),學(xué)生結(jié)合正、余弦的概念,完全可以自己解決,教師要給學(xué)生足夠的研究解決問(wèn)題的時(shí)間,以培養(yǎng)學(xué)生邏輯思維能力及獨(dú)立思考、勇于創(chuàng)新的精神.
3.教師板書(shū):
任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值.
sinA=cos(90°-A),cosA=sin(90°-A).
4.在學(xué)習(xí)了正、余弦概念的基礎(chǔ)上,學(xué)生了解以上內(nèi)容并不困難,但是,由于學(xué)生初次接觸三角函數(shù),還不熟練,而定理又涉及余角、余函數(shù),使學(xué)生極易混淆.因此,定理的應(yīng)用對(duì)學(xué)生來(lái)說(shuō)是難點(diǎn)、在給出定理后,需加以鞏固.
已知∠A和∠B都是銳角,
(1)把cos(90°-A)寫(xiě)成∠A的正弦.
(2)把sin(90°-A)寫(xiě)成∠A的余弦.
這一練習(xí)只能起到鞏固定理的作用.為了運(yùn)用定理,教材安排了例3.
(2)已知sin35°=0.5736,求cos55°;
(3)已知cos47°6′=0.6807,求sin42°54′.
(1)問(wèn)比較簡(jiǎn)單,對(duì)照定理,學(xué)生立即可以回答.(2)、(3)比(1)則更深一步,因?yàn)?1)明確指出∠B與∠A互余,(2)、(3)讓學(xué)生自己發(fā)現(xiàn)35°與55°的角,47°6′分42°54′的角互余,從而根據(jù)定理得出答案,因此(2)、(3)問(wèn)在課堂上應(yīng)該請(qǐng)基礎(chǔ)好一些的同學(xué)講清思維過(guò)程,便于全體學(xué)生掌握,在三個(gè)問(wèn)題處理完之后,最好將題目變形:
(2)已知sin35°=0.5736,則cos______=0.5736.
(3)cos47°6′=0.6807,則sin______=0.6807,以培養(yǎng)學(xué)生思維能力.
為了配合例3的教學(xué),教材中配備了練習(xí)題2.
(2)已知sin67°18′=0.9225,求cos22°42′;
(3)已知cos4°24′=0.9971,求sin85°36′.
學(xué)生獨(dú)立完成練習(xí)2,就說(shuō)明定理的教學(xué)較成功,學(xué)生基本會(huì)運(yùn)用.
教材中3的設(shè)置,實(shí)際上是對(duì)前二節(jié)課內(nèi)容的綜合運(yùn)用,既考察學(xué)生正、余弦概念的掌握程度,同時(shí)又對(duì)本課知識(shí)加以鞏固練習(xí),因此例3的安排恰到好處.同時(shí),做例3也為下一節(jié)查正余弦表做了準(zhǔn)備.
(四)小結(jié)與擴(kuò)展
1.請(qǐng)學(xué)生做知識(shí)小結(jié),使學(xué)生對(duì)所學(xué)內(nèi)容進(jìn)行歸納總結(jié),將所學(xué)內(nèi)容變成自己知識(shí)的組成部分.
2.本節(jié)課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關(guān)系,以及正弦、余弦的概念得出的結(jié)論:任意一個(gè)銳角的正弦值等于它的余角的余弦值,任意一個(gè)銳角的余弦值等于它的余角的正弦值.
四、布置作業(yè)
教材習(xí)題14.1A組4、5.
五、板書(shū)設(shè)計(jì)
初三數(shù)學(xué)教案3
一,班級(jí)情況分析
這個(gè)學(xué)期,我會(huì)繼續(xù)教初三X班的數(shù)學(xué)。這個(gè)班有XX名學(xué)生,包括XX名男生和XX名女生。初三學(xué)生已經(jīng)有了兩年的數(shù)學(xué)學(xué)習(xí)經(jīng)歷,對(duì)一些基礎(chǔ)的數(shù)學(xué)知識(shí)有了初步的了解。學(xué)生已經(jīng)習(xí)慣了新教材的學(xué)習(xí)思路和學(xué)習(xí)方法,大部分意識(shí)到數(shù)學(xué)知識(shí)無(wú)處不在,生活中處處有數(shù)學(xué)。這為學(xué)生學(xué)習(xí)本書(shū)奠定了重要基礎(chǔ),也為提高學(xué)生解決問(wèn)題和實(shí)踐的能力創(chuàng)造了條件。
二,教材分析
本教材包括以下內(nèi)容:一萬(wàn)以內(nèi)的加減法、帶余數(shù)的除法、多位數(shù)乘一位數(shù)、分?jǐn)?shù)的初步認(rèn)識(shí)、四邊形的認(rèn)識(shí)、公里和噸、小時(shí)、分鐘和秒、可能性、數(shù)學(xué)廣角和數(shù)學(xué)實(shí)踐活動(dòng)等。萬(wàn)以內(nèi)的加減法、多位數(shù)乘以一位數(shù)、四邊形是這本教材的重點(diǎn)教學(xué)內(nèi)容。
本教材對(duì)教學(xué)內(nèi)容的安排和處理,以整本教材的編寫(xiě)思路和原則為指導(dǎo),使教材的結(jié)構(gòu)符合教育學(xué)、心理學(xué)的原理和兒童的年齡特點(diǎn),體現(xiàn)了以往教材的相同風(fēng)格和特點(diǎn)。因此,該教材仍具有內(nèi)容豐富、注重學(xué)生的經(jīng)驗(yàn)和體會(huì)、反映知識(shí)的形成過(guò)程、鼓勵(lì)算法多樣化、改變學(xué)生的學(xué)習(xí)方式、體現(xiàn)開(kāi)放式教學(xué)方式等特點(diǎn)。同時(shí),由于教學(xué)內(nèi)容的不同,這本教材還具有以下明顯的特點(diǎn):
1.改進(jìn)計(jì)算教學(xué)的安排,體現(xiàn)計(jì)算教學(xué)改革的理念,重視培養(yǎng)學(xué)生的數(shù)感。
(1)精心設(shè)計(jì)教學(xué)順序,分步教學(xué)。計(jì)算的教學(xué)順序要符合兒童學(xué)習(xí)計(jì)算的認(rèn)知規(guī)律,同時(shí)也要符合計(jì)算知識(shí)本身發(fā)展的規(guī)律。
(2)讓學(xué)生在自己的探索中,通過(guò)書(shū)寫(xiě)的方式了解計(jì)算的過(guò)程和原理,不再有文字概括形式的計(jì)算規(guī)則?偨Y(jié)、理解和記憶計(jì)算規(guī)則是以往筆算教學(xué)中的重要環(huán)節(jié)。當(dāng)前的數(shù)學(xué)課程改革強(qiáng)調(diào)學(xué)生要在現(xiàn)實(shí)情境中理解概念和規(guī)律,避免機(jī)械記憶。
(3)讓學(xué)生在真實(shí)情境中理解計(jì)算的意義和作用,培養(yǎng)學(xué)生用數(shù)學(xué)解決問(wèn)題的能力和良好的數(shù)感。計(jì)算是幫助人們解決問(wèn)題的工具,它的作用只有在解決問(wèn)題的具體情境中才能真正體現(xiàn)出來(lái)。
(4)寫(xiě)作教學(xué)與估算教學(xué)相結(jié)合,加強(qiáng)估算教學(xué)。估算的學(xué)習(xí)對(duì)培養(yǎng)學(xué)生的數(shù)感具有重要意義;同時(shí),估算也具有重要的實(shí)用價(jià)值。人們?cè)谌粘I钪型恍枰烙?jì)結(jié)果。
2.量與測(cè)量的教學(xué)聯(lián)系生活實(shí)際,強(qiáng)調(diào)學(xué)生的感受和體驗(yàn)。
各種量和度量的概念,如公里、噸、秒等。,來(lái)自人們生活和生產(chǎn)的需要。長(zhǎng)度、質(zhì)量、時(shí)間這些概念很抽象,但它們所反映的內(nèi)容卻很現(xiàn)實(shí),與人們的生活、生產(chǎn)密切相關(guān)。因此,這部分知識(shí)的教學(xué)要使學(xué)生在學(xué)習(xí)過(guò)程中體驗(yàn)、感受和理解這些概念的含義,初步發(fā)展長(zhǎng)度、質(zhì)量和時(shí)間的概念,認(rèn)識(shí)數(shù)學(xué)與生活的密切關(guān)系,提高應(yīng)用這些知識(shí)解決問(wèn)題的能力。因此,實(shí)驗(yàn)教材在數(shù)量和測(cè)量?jī)?nèi)容的安排上,要注意設(shè)計(jì)豐富的、現(xiàn)實(shí)的、探索性的活動(dòng),讓學(xué)生在現(xiàn)實(shí)背景中感受和體驗(yàn)相關(guān)知識(shí),體驗(yàn)探索和發(fā)現(xiàn)的過(guò)程。
3.空和圖形的教學(xué)強(qiáng)調(diào)實(shí)際操作和自主探索,加強(qiáng)估算意識(shí)和能力的培養(yǎng)。
在這本教材中,空空間與圖形的教學(xué)內(nèi)容包括了大部分的四邊形和度量。這些內(nèi)容對(duì)學(xué)生理解、把握和描述空空間的現(xiàn)實(shí)性,獲取解決實(shí)際問(wèn)題的知識(shí),發(fā)展學(xué)生的空空間概念有著重要的作用。對(duì)于這些內(nèi)容的安排,教材一方面注重讓學(xué)生通過(guò)實(shí)際操作獲得豐富的感性經(jīng)驗(yàn),另一方面讓學(xué)生通過(guò)自主探索獲得對(duì)知識(shí)的理解。幾何直觀探究活動(dòng)不僅為培養(yǎng)學(xué)生的創(chuàng)新意識(shí)提供了更有利的條件,也為培養(yǎng)學(xué)生的“空”概念打下了良好的基礎(chǔ)。
三,教學(xué)目標(biāo)
本教材的教學(xué)目標(biāo)是使學(xué)生能夠:
1.能手工計(jì)算三位數(shù)的加減,并進(jìn)行相應(yīng)的估算和校核計(jì)算。
2、能通過(guò)整十、整百計(jì)算個(gè)位數(shù);會(huì)用兩三位數(shù)算一位數(shù),會(huì)做一個(gè)估算;精通計(jì)算除數(shù)和商是有余數(shù)的一位數(shù)除法。
3.對(duì)簡(jiǎn)單分?jǐn)?shù)(分母小于10)有初步了解,能讀寫(xiě)分?jǐn)?shù)并知道各部分的名稱。對(duì)分?jǐn)?shù)的大小有初步了解,能計(jì)算分母相同的分?jǐn)?shù)的簡(jiǎn)單加減運(yùn)算。
4.對(duì)平行四邊形有初步的了解,掌握矩形和正方形的特點(diǎn),能在正方形紙上畫(huà)出矩形、正方形和平行四邊形;知道了周長(zhǎng)的意義,我們就可以計(jì)算長(zhǎng)方形和正方形的周長(zhǎng);有些物體的長(zhǎng)度是可以估計(jì)和測(cè)量的。
5.知道公里的長(zhǎng)度單位,初步建立1公里長(zhǎng)度的概念,知道1公里= 1000米;了解質(zhì)量單位噸,初步建立1噸的質(zhì)量概念,知道1噸=1000公斤;知道時(shí)間單位秒,初步建立分、秒的時(shí)間概念,知道1分鐘=60秒,對(duì)時(shí)間進(jìn)行一些簡(jiǎn)單的計(jì)算。
6.初步經(jīng)驗(yàn)有些事件是確定的',有些是不確定的;能夠列出簡(jiǎn)單實(shí)驗(yàn)的所有可能結(jié)果,知道事件的可能性有大有小,描述一些簡(jiǎn)單事件的可能性。
7.能夠找出事物簡(jiǎn)單的排列組合數(shù),形成生活中發(fā)現(xiàn)數(shù)學(xué)和綜合思考問(wèn)題的意識(shí),初步形成觀察、分析、推理的能力。
8.體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,提高學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)好數(shù)學(xué)的信心。
9.養(yǎng)成認(rèn)真做作業(yè),字跡工整的好習(xí)慣。
10.體驗(yàn)數(shù)學(xué)與日常生活的密切關(guān)系,初步形成綜合運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力。
四、教學(xué)的重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):一萬(wàn)以內(nèi)的加減法,多位數(shù)乘一位數(shù),四邊形。
教學(xué)難點(diǎn):對(duì)時(shí)間、四邊形、帶余數(shù)除法的理解。
動(dòng)詞(verb的縮寫(xiě))這一時(shí)期提高教學(xué)質(zhì)量的方法和措施
1.認(rèn)真整頓課堂紀(jì)律,讓孩子有良好的聽(tīng)講習(xí)慣。激發(fā)學(xué)生學(xué)習(xí)興趣,提高課堂教學(xué)效率。
2、按計(jì)劃、保質(zhì)、保量完成當(dāng)前的教學(xué)工作,在教學(xué)中要注意認(rèn)真?zhèn)湔n,上好課。確保教學(xué)質(zhì)量的穩(wěn)定和提高。
3.調(diào)查學(xué)生缺失的知識(shí),找時(shí)間及時(shí)補(bǔ)充,讓所有學(xué)生都能順利輕松的學(xué)習(xí)相關(guān)知識(shí)。
4.密切關(guān)注學(xué)困生,從他們的態(tài)度、興趣、習(xí)慣、方法等方面入手。從一個(gè)班到另一個(gè)班,抓住一切機(jī)會(huì)幫助和輔導(dǎo)他們,努力進(jìn)一步提高他們?cè)械乃健?/p>
5.加強(qiáng)自身學(xué)習(xí),與同組老師學(xué)習(xí)交流,提高自己的教學(xué)水平和專業(yè)能力。
不及物動(dòng)詞教學(xué)進(jìn)度
第一周:測(cè)量:對(duì)毫米和分米的理解;第二周:計(jì)量:對(duì)公里的理解,對(duì)噸的理解。
第三周:一萬(wàn)以內(nèi)數(shù)字的加減法第四周:一萬(wàn)以內(nèi)數(shù)字的減法和檢查加減法的計(jì)算
第五周:加減法的計(jì)算第六周:國(guó)慶假期
第七周:整理復(fù)習(xí),四邊形第八周:四邊形和平行四邊形。
第九周:周長(zhǎng),長(zhǎng)方形和正方形的周長(zhǎng)第十周:估計(jì),除以余數(shù)
第11周:帶余數(shù)的除法第12周:時(shí)、分、秒:秒的識(shí)別和時(shí)間的計(jì)算
第13周:多個(gè)數(shù)字乘以一個(gè)數(shù)字:口算乘法
第14周:多個(gè)數(shù)字乘以一個(gè)數(shù)字:書(shū)寫(xiě)乘法(一個(gè)數(shù)字乘以兩個(gè)或三個(gè)數(shù)字)
第15周:多位數(shù)乘一位數(shù):末尾和中間為0的乘法、整理和復(fù)習(xí)。
第16周:分?jǐn)?shù)的初步認(rèn)知第17周:分?jǐn)?shù)的初步認(rèn)知和可能性
第18周:數(shù)學(xué)廣角第19周:總復(fù)習(xí)
第20周:期末復(fù)習(xí)第21周:期末復(fù)習(xí)測(cè)驗(yàn)
初三數(shù)學(xué)教案4
一、教學(xué)目標(biāo)
1、知識(shí)與技能
(1)理解圓與圓的位置的種類;
(2)利用平面直角坐標(biāo)系中兩點(diǎn)間的距離公式求兩圓的連心線長(zhǎng);
(3)會(huì)用連心線長(zhǎng)判斷兩圓的位置關(guān)系.
2、過(guò)程與方法
設(shè)兩圓的連心線長(zhǎng)為,則判別圓與圓的位置關(guān)系的依據(jù)有以下幾點(diǎn):
(1)當(dāng)時(shí),圓與圓相離;
(2)當(dāng)時(shí),圓與圓外切;
(3)當(dāng)時(shí),圓與圓相交;
(4)當(dāng)時(shí),圓與圓內(nèi)切;
(5)當(dāng)時(shí),圓與圓內(nèi)含;
3、情態(tài)與價(jià)值觀
讓學(xué)生通過(guò)觀察圖形,理解并掌握?qǐng)A與圓的位置關(guān)系,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想.
二、教學(xué)重點(diǎn)、難點(diǎn):
重點(diǎn)與難點(diǎn):用坐標(biāo)法判斷圓與圓的位置關(guān)系.
問(wèn)題 設(shè)計(jì)意圖 師生活動(dòng)
1.初中學(xué)過(guò)的平面幾何中,圓與圓的`位置關(guān)系有幾類? 結(jié)合學(xué)生已有知識(shí)以驗(yàn),啟發(fā)學(xué)生思考,激發(fā)學(xué)生學(xué)習(xí)興趣. 教師引導(dǎo)學(xué)生回憶、舉例,并對(duì)學(xué)生活動(dòng)進(jìn)行評(píng)價(jià);學(xué)生回顧知識(shí)點(diǎn)時(shí),可互相交流.
2.判斷兩圓的位置關(guān)系,你有什么好的方法嗎?
引導(dǎo)學(xué)生明確兩圓的位置關(guān)系,并發(fā)現(xiàn)判斷和解決兩圓的位置 教師引導(dǎo)學(xué)生閱讀教科書(shū)中的相關(guān)內(nèi)容,注意個(gè)別輔導(dǎo),解答學(xué)生疑難,并引導(dǎo)學(xué)生自己總結(jié)解題的方法.
初三數(shù)學(xué)教案5
教學(xué)目標(biāo)
1、會(huì)運(yùn)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法。
2、會(huì)運(yùn)用因式分解解簡(jiǎn)單的方程。
二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):
教學(xué)重點(diǎn)
因式分解在多項(xiàng)式除法和解方程兩方面的應(yīng)用。
教學(xué)難點(diǎn):
應(yīng)用因式分解解方程涉及較多的推理過(guò)程。
三、教學(xué)過(guò)程
(一)引入新課
1、知識(shí)回顧(1)因式分解的幾種方法:
①提取公因式法:ma+mb=m(a+b)
②應(yīng)用平方差公式:=(a+b)(a—b)
③應(yīng)用完全平方公式:a 2ab+b =(ab)
(2)課前熱身:①分解因式:(x +4)y — 16x y
。ǘ⿴熒(dòng),講授新課
1、運(yùn)用因式分解進(jìn)行多項(xiàng)式除法例
1計(jì)算:(1)(2ab —8a b)(4a—b)
(2)(4x —9)(3—2x)
解:(1)(2ab —8a b)(4a—b)=—2ab(4a—b)(4a—b)=—2ab(2)(4x —9)(3—2x)=(2x+3)(2x—3)[—(2x—3)] =—(2x+3)=—2x—3
一個(gè)小問(wèn)題:這里的x能等于3/2嗎?為什么?
想一想:那么(4x —9)(3—2x)呢?練習(xí):課本P162課內(nèi)練習(xí)
合作學(xué)習(xí)
想一想:如果已知()()=0,那么這兩個(gè)括號(hào)內(nèi)應(yīng)填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢?(讓學(xué)生自己思考、相互之間討論。┦聦(shí)上,若AB=0,則有下面的結(jié)論:(1)A和B同時(shí)都為零,即A=0,且B=0(2)A和B中有一個(gè)為零,即A=0,或B=0
試一試:你能運(yùn)用上面的結(jié)論解方程(2x+1)(3x—2)=0嗎?
3、運(yùn)用因式分解解簡(jiǎn)單的方程例
2、解下列方程:(1)2x +x=0(2)(2x—1)=(x+2)解:x(x+1)=0解:(2x—1)—(x+2)=0則x=0,或2x+1=0(3x+1)(x—3)=0原方程的根是x1=0,x2=則3x+1=0,或x—3=0原方程的根是x1=,x2=3注:只含有一個(gè)未知數(shù)的方程的解也叫做根,當(dāng)方程的根多于一個(gè)時(shí),常用帶足標(biāo)的字母表示,比如:x1,x2
做一做!對(duì)于方程:x+2=(x+2),你是如何解該方程的,方程左右兩邊能同時(shí)除以(x+2)嗎?為什么?
教師總結(jié):運(yùn)用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個(gè)一元一次方程;(2)如果方程的兩邊都不是零,那么應(yīng)該先移項(xiàng),把方程的'右邊化為零以后再進(jìn)行解方程;遇到方程兩邊有公因式,同樣需要先進(jìn)行移項(xiàng)使右邊化為零,切忌兩邊同時(shí)除以公因式!
4、知識(shí)延伸解方程:(x+4)—16x =0解:將原方程左邊分解因式,得(x +4)—(4x)=0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0(x+2)(x—2)=0接著繼續(xù)解方程,5、練一練①已知a、b、c為三角形的三邊,試判斷a—2ab+b —c大于零?小于零?等于零?解:a —2ab+b —c =(a—b)—c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊a+c﹥b a﹤b+c a—b+c﹥0 a—b—c﹤0即:(a—b+c)(a—b—c)﹤0,因此a —2ab+b —c小于零。
6、挑戰(zhàn)極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解:∵4x — 4x+3=(4x —4x+1)+2 =(2x—1)+2 0x +2x+2 =(x +2x+1)+1 =(x+1)+10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2)+13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知識(shí),總結(jié)收獲因式分解的兩種應(yīng)用:
(1)運(yùn)用因式分解進(jìn)行多項(xiàng)式除法
。2)運(yùn)用因式分解解簡(jiǎn)單的方程
(四)布置課后作業(yè)
作業(yè)本6、42、課本P163作業(yè)題(選做)
初三數(shù)學(xué)教案6
一、教學(xué)目標(biāo)
1.經(jīng)歷兩個(gè)三角形相似的探索過(guò)程,進(jìn)一步發(fā)展學(xué)生的探究、交流能力。
2.掌握“兩角對(duì)應(yīng)相等,兩個(gè)三角形相似”的判定方法。
3.能夠運(yùn)用三角形相似的條件解決簡(jiǎn)單的問(wèn)題。
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):三角形相似的判定方法3--“兩角對(duì)應(yīng)相等,兩個(gè)三角形相似”
2.難點(diǎn):三角形相似的判定方法3的`運(yùn)用。
3.難點(diǎn)的突破方法
(1)在兩個(gè)三角形中,只要滿足兩個(gè)對(duì)應(yīng)角相等,那么這兩個(gè)三角形相似,這是三角形相似中最常用的一個(gè)判定方法。
(2)公共角、對(duì)頂角、同角的余角(或補(bǔ)角)、同弧上的圓周角都是相等的,是判別兩個(gè)三角形相似的重要依據(jù)。
(3)如果兩個(gè)三角形是直角三角形, 則只要再找到一對(duì)銳角相等即可說(shuō)明這兩個(gè)三角形相似。
三、例題的意圖
本節(jié)課安排了兩個(gè)例題,例1是教材P48的例2,是一個(gè)圓中證相似的題目,這個(gè)題目比較簡(jiǎn)單,可以讓學(xué)生來(lái)分析、讓學(xué)生說(shuō)出思維的方法、讓學(xué)生自己寫(xiě)出證明過(guò)程。并讓學(xué)生掌握遇到等積式,應(yīng)先將其化為比例式的方法。
例2是一個(gè)補(bǔ)充的題目,選擇這個(gè)題目是希望學(xué)生通過(guò)這個(gè)題的學(xué)習(xí),掌握利用三角形相似的知識(shí)來(lái)求線段長(zhǎng)的方法,為下節(jié)課學(xué)習(xí)“27.2.2 相似三角形的應(yīng)用舉例”打基礎(chǔ)。
四、課堂引入
1.復(fù)習(xí)提問(wèn):
(1)我們已學(xué)習(xí)過(guò)哪些判定三角形相似的方法?
(2)如圖,△ABC中,點(diǎn)D在AB上,如果AC2=AD?AB,
初三數(shù)學(xué)教案7
【學(xué)習(xí)目標(biāo)】
1.了解圓周角的概念.
2.理解圓周角的定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.
3.理解圓周角定理的推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.
4.熟練掌握?qǐng)A周角的定理及其推理的靈活運(yùn)用.
設(shè)置情景,給出圓周角概念,探究這些圓周角與圓心角的關(guān)系,運(yùn)用數(shù)學(xué)分類思想給予邏輯證明定理,得出推導(dǎo),讓學(xué)生活動(dòng)證明定理推論的正確性,最后運(yùn)用定理及其推導(dǎo)解決一些實(shí)際問(wèn)題
【學(xué)習(xí)過(guò)程】
一、溫故知新:
(學(xué)生活動(dòng))同學(xué)們口答下面兩個(gè)問(wèn)題.
1.什么叫圓心角?
2.圓心角、弦、弧之間有什么內(nèi)在聯(lián)系呢?
二、自主學(xué)習(xí):
自學(xué)教材P90---P93,思考下列問(wèn)題:
1、什么叫圓周角?圓周角的'兩個(gè)特征:。
2、在下面空里作一個(gè)圓,在同一弧上作一些圓心角及圓周角。通過(guò)圓周角的概念和度量的方法回答下面的問(wèn)題.
(1)一個(gè)弧上所對(duì)的圓周角的個(gè)數(shù)有多少個(gè)?
(2).同弧所對(duì)的圓周角的度數(shù)是否發(fā)生變化?
(3).同弧上的圓周角與圓心角有什么關(guān)系?
3、默寫(xiě)圓周角定理及推論并證明。
4、能去掉"同圓或等圓"嗎?若把"同弧或等弧"改成"同弦或等弦"性質(zhì)成立嗎?
5、教材92頁(yè)思考?在同圓或等圓中,如果兩個(gè)圓周角相等,它們所對(duì)的弧一定相等嗎?為什么?
三、典型例題:
例1、(教材93頁(yè)例2)如圖,⊙O的直徑AB為10cm,弦AC為6cm,,∠ACB的平分線交⊙O于D,求BC、AD、BD的長(zhǎng)。
例2、如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到C,使AC=AB,BD與CD的大小有什么關(guān)系?為什么?
四、鞏固練習(xí):
1、(教材P93練習(xí)1)
解:
2、(教材P93練習(xí)2)
3、(教材P93練習(xí)3)
證明:
4、(教材P95習(xí)題24.1第9題)
五、總結(jié)反思:
【達(dá)標(biāo)檢測(cè)】
1.如圖1,A、B、C三點(diǎn)在⊙O上,∠AOC=100°,則∠ABC等于().
A.140°B.110°C.120°D.130°
(1)(2)(3)
2.如圖2,∠1、∠2、∠3、∠4的大小關(guān)系是()
A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2
C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠2
3.如圖3,(中考題)AB是⊙O的直徑,BC,CD,DA是⊙O的弦,且BC=CD=DA,則∠BCD等于()
A.100°B.110°C.120°D.130°
4.半徑為2a的⊙O中,弦AB的長(zhǎng)為2a,則弦AB所對(duì)的圓周角的度數(shù)是________.
5.如圖4,A、B是⊙O的直徑,C、D、E都是圓上的點(diǎn),則∠1+∠2=_______.
(4)(5)
6.(中考題)如圖5,于,若,則
7.如圖,弦AB把圓周分成1:2的兩部分,已知⊙O半徑為1,求弦長(zhǎng)AB.
【拓展創(chuàng)新】
1.如圖,已知AB=AC,∠APC=60°
(1)求證:△ABC是等邊三角形.
(2)若BC=4cm,求⊙O的面積.
3、教材P95習(xí)題24.1第12、13題。
【布置作業(yè)】
教材P95習(xí)題24.1第10、11題。
初三數(shù)學(xué)教案8
第一課時(shí)
素質(zhì)教育目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn)
1.使學(xué)生初步了解統(tǒng)計(jì)知識(shí)是應(yīng)用廣泛的數(shù)學(xué)內(nèi)容 .
2.了解平均數(shù)的意義,會(huì)計(jì)算一組數(shù)據(jù)的平均數(shù) .
3.當(dāng)一組數(shù)據(jù)的數(shù)值較大時(shí),會(huì)用簡(jiǎn)算公式計(jì)算一組數(shù)據(jù)的平均數(shù) .
。ǘ┠芰τ(xùn)練點(diǎn)
培養(yǎng)學(xué)生的觀察能力、計(jì)算能力 .
(三)德育滲透點(diǎn)
1.培養(yǎng)學(xué)生認(rèn)真、耐心、細(xì)致的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣 .
2.滲透數(shù)學(xué)來(lái)源于實(shí)踐,反地來(lái)又作用于實(shí)踐的觀點(diǎn) .
。ㄋ模┟烙凉B透點(diǎn)
通過(guò)本課的學(xué)習(xí),滲透數(shù)學(xué)公式的簡(jiǎn)單美和結(jié)構(gòu)的嚴(yán)謹(jǐn)美,展示了寓深?yuàn)W于淺顯,寓紛繁于嚴(yán)謹(jǐn)?shù)霓q證統(tǒng)一的數(shù)學(xué)美 .
重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
1.教學(xué)重點(diǎn):平均數(shù)的概念及其計(jì)算 .
2.教學(xué)難點(diǎn):平均數(shù)的簡(jiǎn)化計(jì)算 .
3.教學(xué)疑點(diǎn):平均數(shù)簡(jiǎn)化公式的應(yīng)用,a如何選擇 .
4.解決辦法:分清兩個(gè)公式,公式②的運(yùn)用要選擇一個(gè)適當(dāng)?shù)腶 .
教學(xué)步驟
。ㄒ唬┟鞔_目標(biāo)
在日常生活中,我們常與數(shù)據(jù)打交道,例如,電視臺(tái)每天晚上都要預(yù)報(bào)第二天當(dāng)?shù)氐淖畹蜌鉁嘏c最高氣溫,商店每天都要結(jié)算一下當(dāng)天的營(yíng)業(yè)額,每個(gè)班次的飛機(jī)都要統(tǒng)計(jì)一下乘客的人數(shù)等.這些都涉及數(shù)據(jù)的計(jì)算問(wèn)題.請(qǐng)同學(xué)們思考下面問(wèn)題.(教師出示幻燈片)
為了從甲乙兩名學(xué)生中選拔一人參加射擊比賽,對(duì)他們的射擊水平進(jìn)行了測(cè)驗(yàn).兩人在相同條件下各射靶10次,命中的環(huán)數(shù)如下:
甲 7 8 6 8 6 5 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
1.怎樣比較兩個(gè)人的成績(jī)?2.應(yīng)選哪一個(gè)人參加射擊比賽?
教師要引導(dǎo)學(xué)生觀察,給學(xué)生充分的時(shí)間去思考,并可以分成小組討論解決辦法.
對(duì)于這個(gè)問(wèn)題,部分學(xué)生可能感到無(wú)從下手,部分學(xué)生可能想到去比較兩組數(shù)據(jù)的平均,讓學(xué)生動(dòng)手具體算一下兩組數(shù)據(jù)的平均數(shù)結(jié)果它們相等在學(xué)生無(wú)法解決此問(wèn)題的情況下,教師說(shuō)明,這正是本章要解決的問(wèn)題之一(寫(xiě)出課題).這樣做的目的是教師有意創(chuàng)設(shè)問(wèn)題情境、制造懸念,這不僅能激發(fā)學(xué)生學(xué)習(xí)的積極性和自覺(jué)性,引起學(xué)生對(duì)所學(xué)課程的注意,還能誘發(fā)學(xué)生探求新知識(shí)的濃厚興趣.
。ǘ┱w感知
解決類似上述的問(wèn)題要用到統(tǒng)計(jì)學(xué)的知識(shí),統(tǒng)計(jì)學(xué)是一門(mén)研究如何收集、整理、分析數(shù)據(jù)并據(jù)之做出推斷的'科學(xué),它以概率論為基礎(chǔ),著重研究如何根據(jù)樣本的性質(zhì)去推測(cè)總體的性質(zhì).在當(dāng)今的信息時(shí)代,統(tǒng)計(jì)學(xué)的應(yīng)用非常廣泛,以至于它已滲透到整個(gè)社會(huì)生活的各個(gè)方面.本章我們將學(xué)習(xí)統(tǒng)計(jì)學(xué)的一些初步知識(shí).
。ㄈ┙虒W(xué)過(guò)程
這節(jié)課我們首先來(lái)學(xué)習(xí)平均數(shù).
1.(出示幻燈片)請(qǐng)同學(xué)看下面問(wèn)題:
某班第一小組一次數(shù)學(xué)測(cè)驗(yàn)的成績(jī)?nèi)缦拢?/p>
86 91 100 72 93 89 90 85 75 95
這個(gè)小組的平均成績(jī)是多少?
教師引導(dǎo)學(xué)生動(dòng)筆計(jì)算,并找一名學(xué)生到黑板板演,講完引例后,引導(dǎo)學(xué)生歸納出求平均數(shù)方法,這樣做使學(xué)生對(duì)平均數(shù)的計(jì)算公式能有深刻的認(rèn)識(shí) .
2.平均數(shù)的概念及計(jì)算公式
一般地,如果有n個(gè)數(shù) .
那么 ①
叫做這n個(gè)數(shù)的平均數(shù), 讀作“x撥” .
這是在初中數(shù)學(xué)課本中第一次出現(xiàn)帶有省略號(hào)的用字母表示的n個(gè)數(shù)相加的一般寫(xiě)法 .學(xué)生對(duì)此可能會(huì)感到比較抽象,不太習(xí)慣,要向?qū)W生強(qiáng)調(diào),采用這種寫(xiě)法是簡(jiǎn)化表示,是為了使問(wèn)題的討論具有一般性 .教師應(yīng)通過(guò)對(duì)公式的剖析,使學(xué)生正確理解公式,并掌握公式中各元素的意義 .
3.平均數(shù)計(jì)算公式①的應(yīng)用
例1 一個(gè)地區(qū)某年1月上旬各天的最低氣溫依次是(單位:℃):
-6,-5,-7,-6,-4,-5,-7,-8,-7
求它們的平均氣溫 .
讓學(xué)生動(dòng)手計(jì)算,以鞏固平均數(shù)計(jì)算公式(一名學(xué)生板演)
教師應(yīng)強(qiáng)調(diào):①解題格式 .②在統(tǒng)計(jì)學(xué)里處理的數(shù)據(jù)包括負(fù)數(shù) .③在本章中,如無(wú)特殊說(shuō)明,平均數(shù)計(jì)算結(jié)果保留的位數(shù)與原數(shù)據(jù)相同 .
例2 從一批機(jī)器零件毛坯中取出20件,稱得它們的質(zhì)量如下(單位:千克):
210 208 200 205 202 218 206 214 215 207 195 207 218 192 202 216 185 227 187 215
計(jì)算它們的平均質(zhì)量 .(用投影儀打出)
引導(dǎo)學(xué)生兩人一組完成計(jì)算,然后一起對(duì)答案 .由于數(shù)據(jù)較大,計(jì)算較繁,可能會(huì)出現(xiàn)不同的答案 .正好為下面提出簡(jiǎn)化計(jì)算公式作好鋪墊 .
教師提出問(wèn)題:像例2這樣,數(shù)據(jù)較大,計(jì)算較繁,因而容易出錯(cuò),有沒(méi)有較為簡(jiǎn)便的算法呢?引導(dǎo)學(xué)生觀察數(shù)據(jù)有什么特點(diǎn)?都接近于哪一個(gè)數(shù)?啟發(fā)學(xué)生討論,尋找簡(jiǎn)便算法 .
學(xué)生回答:數(shù)據(jù)都在200左右波動(dòng),可將各數(shù)據(jù)同時(shí)減去200,轉(zhuǎn)而計(jì)算一組數(shù)值較小的新數(shù)據(jù)的平均數(shù),至此讓學(xué)生再一次兩人一組用簡(jiǎn)便方法計(jì)算例2,并與前面計(jì)算的結(jié)果相比較是否一樣 .
講完例2后,教師指出幾點(diǎn):常數(shù)a的取法不是惟一的; 讀作“x——撇——撥”;;簡(jiǎn)化計(jì)算的結(jié)果與前面毛算的結(jié)果相同 .
通過(guò)學(xué)生的動(dòng)手計(jì)算,若產(chǎn)生困難或錯(cuò)誤,教師及時(shí)點(diǎn)撥,引導(dǎo)學(xué)生尋找解決問(wèn)題的方法,這不僅可以激發(fā)學(xué)生學(xué)習(xí)的興趣,更培養(yǎng)了學(xué)生的發(fā)散思維能力,同時(shí)也使學(xué)生對(duì)公式②的推導(dǎo)更容易接受 .
3.推導(dǎo)公式②
一般地,當(dāng)一組數(shù)據(jù) 的各個(gè)數(shù)值較大時(shí),可將各數(shù)據(jù)同時(shí)減去一個(gè)適當(dāng)?shù)某?shù)a,得到,
那么 ,
因此,
即 ②
為了加深學(xué)生對(duì)公式②的認(rèn)識(shí),再讓學(xué)生指出例2的 、 、 各是什么?(學(xué)生回答)
課堂練習(xí):
教材P148中~P149中1,2,3
。ㄋ模┛偨Y(jié)、擴(kuò)展
知識(shí)小結(jié):1.統(tǒng)計(jì)學(xué)是一門(mén)與數(shù)據(jù)打交道的學(xué)問(wèn),應(yīng)用十分廣泛 .本章將要學(xué)習(xí)的是統(tǒng)計(jì)學(xué)的初步知識(shí) .
2.求n個(gè)數(shù)據(jù)的平均數(shù)的公式① .
3.平均數(shù)的簡(jiǎn)化計(jì)算公式② .這個(gè)公式很重要,要學(xué)會(huì)運(yùn)用 .
方法小結(jié):通過(guò)本節(jié)課我們學(xué)到了示一組數(shù)據(jù)平均數(shù)的方法 .當(dāng)數(shù)據(jù)比較小時(shí),可用公式①直接計(jì)算 .當(dāng)數(shù)據(jù)比較大,而且都在某一個(gè)數(shù)左右波動(dòng)時(shí),可選用公式②進(jìn)行計(jì)算 .
八、布置作業(yè)
教材P153中1、2、3、4 .
初三數(shù)學(xué)教案9
教學(xué)目標(biāo)
1、了解二次根式的概念、
2、掌握二次根式的基本性質(zhì)
教學(xué)過(guò)程
一、提出問(wèn)題
上一節(jié)我們學(xué)習(xí)了平方根和算術(shù)平方根的意義,引進(jìn)了一個(gè)新的記號(hào),現(xiàn)在請(qǐng)同學(xué)們思考并回答下面兩個(gè)問(wèn)題:
1、表示什么?
2、a需要滿足什么條件?為什么?
二、合作交流,解決問(wèn)題
讓學(xué)生合作交流,然后回答問(wèn)題(可以補(bǔ)充),歸納為;
1、當(dāng)a是正數(shù)時(shí),表示a的算術(shù)平方根,即正數(shù)a的'兩個(gè)平方根中的一個(gè)正數(shù);
2、當(dāng)a是零時(shí),表示零,也叫零的算術(shù)平方根;
3、a≥0,因?yàn)槿魏我粋(gè)有理數(shù)的平方都大于或等于零
三、歸納特點(diǎn),引入二次根式概念
1、基本性質(zhì)、
問(wèn)題1 你能用一句話概括以上3個(gè)結(jié)論嗎?
讓一個(gè)學(xué)生回答、其他學(xué)生補(bǔ)充,概括為:(a≥0)表示非負(fù)數(shù)a的算術(shù)平方根,也就是說(shuō),(a≥0)是一個(gè)非負(fù)數(shù),即≥0(a≥0)。
問(wèn)題2 ()2(a≥0)等于什么?說(shuō)說(shuō)你的理由并舉例驗(yàn)證。
讓學(xué)生小組討論或自主探索得出結(jié)論:()2=a(a≥0),如()2=4,()2=2等、
以上兩個(gè)問(wèn)題的結(jié)論就是基本性質(zhì),特別是()2=a(a≥0)可以當(dāng)公式使用,直接應(yīng)用于計(jì)算。反過(guò)來(lái),把()2=a(a≥0)寫(xiě)成a=()2(a≥0)的形式,這說(shuō)明:任何一個(gè)非負(fù)數(shù)a都可以寫(xiě)成一個(gè)數(shù)的平方的形式、例如:3=()2,3= ()2
提問(wèn):
(1)0=()2對(duì)不對(duì)?
。2)—5=()2對(duì)不對(duì)?如果不對(duì),錯(cuò)在哪里?
2、二次根式概念
形如(a≥0)的式子叫做二次根式、
說(shuō)明:二次根式必須具備以下特點(diǎn);
。1)有二次根號(hào);
(2)被開(kāi)方數(shù)不能小于0。
讓學(xué)生舉出二次根式的幾個(gè)例子,并判斷。
四、范例
例1、要使式子有意義,字母x的取值必須滿足什么條件?
提問(wèn):
若將式子改為,則字母x的取值必須滿足什么條件?
五、課堂練習(xí)
Pl0頁(yè)練習(xí)1、2、
六、思考提高
我們已經(jīng)研究了()2(a≥0)等于a,現(xiàn)在研究等于什么
提問(wèn):
1、對(duì)于抽象問(wèn)題的研究,常常采用什么策略?
2、在中,a的取值有沒(méi)有限制?
3、取一些數(shù)值來(lái)驗(yàn)證。通過(guò)驗(yàn)證,你能發(fā)現(xiàn)什么規(guī)律?
因此,今后我們遇到時(shí),可先改寫(xiě)成a的絕對(duì)值|a|,再按照a取正數(shù)值,0還是負(fù)數(shù)值來(lái)取值、例如當(dāng)x
4、()2與是一樣的嗎?說(shuō)說(shuō)你的理由,并與同學(xué)交流。
七、小結(jié)
1、什么叫做二次根式?你們能舉出幾個(gè)例子嗎?
2、二次根式有哪兩個(gè)形式上的特點(diǎn)?
3、二次根式有哪些性質(zhì)?
八、作業(yè)
習(xí)題22。第1、2、3、4題、
教學(xué)后記:
初三數(shù)學(xué)教案10
教學(xué)目標(biāo)
1、 會(huì)運(yùn)用因式分解進(jìn)行簡(jiǎn)單的多項(xiàng)式除法。
2、 會(huì)運(yùn)用因式分解解簡(jiǎn)單的方程。
二、教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):
教學(xué)重點(diǎn)
因式分解在多項(xiàng)式除法和解方程兩方面的應(yīng)用。
教學(xué)難點(diǎn):
應(yīng)用因式分解解方程涉及較多的推理過(guò)程。
三、教學(xué)過(guò)程
(一)引入新課
1、 知識(shí)回顧(1) 因式分解的幾種方法: ①提取公因式法: ma+mb=m(a+b) ②應(yīng)用平方差公式: = (a+b) (a—b)③應(yīng)用完全平方公式:a 2ab+b =(ab) (2) 課前熱身: ①分解因式:(x +4) y — 16x y
(二)師生互動(dòng),講授新課
1、運(yùn)用因式分解進(jìn)行多項(xiàng)式除法例1 計(jì)算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3
一個(gè)小問(wèn)題 :這里的'x能等于3/2嗎 ?為什么?
想一想:那么(4x —9) (3—2x) 呢?練習(xí):課本P162課內(nèi)練習(xí)
合作學(xué)習(xí)
想一想:如果已知 ( )( )=0 ,那么這兩個(gè)括號(hào)內(nèi)應(yīng)填入怎樣的數(shù)或代數(shù)式子才能夠滿足條件呢? (讓學(xué)生自己思考、相互之間討論。┦聦(shí)上,若AB=0 ,則有下面的結(jié)論:(1)A和B同時(shí)都為零,即A=0,且B=0(2)A和B中有一個(gè)為零,即A=0,或B=0
試一試:你能運(yùn)用上面的結(jié)論解方程(2x+1)(3x—2)=0 嗎?3、 運(yùn)用因式分解解簡(jiǎn)單的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0則x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 則3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一個(gè)未知數(shù)的方程的解也叫做根,當(dāng)方程的根多于一個(gè)時(shí),常用帶足標(biāo)的字母表示,比如:x1 ,x2
等練習(xí):課本P162課內(nèi)練習(xí)2
做一做!對(duì)于方程:x+2=(x+2) ,你是如何解該方程的,方程左右兩邊能同時(shí)除以(x+2)嗎?為什么?
教師總結(jié):運(yùn)用因式分解解方程的基本步驟(1)如果方程的右邊是零,那么把左邊分解因式,轉(zhuǎn)化為解若干個(gè)一元一次方程;(2)如果方程的兩邊都不是零,那么應(yīng)該先移項(xiàng),把方程的右邊化為零以后再進(jìn)行解方程;遇到方程兩邊有公因式,同樣需要先進(jìn)行移項(xiàng)使右邊化為零,切忌兩邊同時(shí)除以公因式!4、知識(shí)延伸解方程:(x +4) —16x =0解:將原方程左邊分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接著繼續(xù)解方程,5、 練一練 ①已知 a、b、c為三角形的三邊,試判斷 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c為三角形的三邊 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑戰(zhàn)極限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx
(三)梳理知識(shí),總結(jié)收獲因式分解的兩種應(yīng)用:
(1)運(yùn)用因式分解進(jìn)行多項(xiàng)式除法
。2)運(yùn)用因式分解解簡(jiǎn)單的方程
(四)布置課后作業(yè)
作業(yè)本6、42、課本P163作業(yè)題(選做)
初三數(shù)學(xué)教案11
教學(xué)過(guò)程設(shè)計(jì)
一、創(chuàng)設(shè)情境 引入課題
活動(dòng)1
問(wèn)題:
你們還記得一次函數(shù)圖象與性質(zhì)嗎?
設(shè)計(jì)意圖
通過(guò)創(chuàng)設(shè)問(wèn)題情境,引導(dǎo)學(xué)生復(fù)習(xí)一次函數(shù)圖象的知識(shí),激發(fā)學(xué)生參與課堂學(xué)習(xí)的熱情,為學(xué)習(xí)反比例函數(shù)的圖象奠定基礎(chǔ)。
師生形為:
教師提出問(wèn)題。學(xué)生思考、交流,回答問(wèn)題。教師根據(jù)學(xué)生活動(dòng)情況進(jìn)行補(bǔ)充和完善。
二、類比聯(lián)想 探究交流
活動(dòng)2
問(wèn)題:
例2 畫(huà)出反比例函數(shù)y= 與y=- 的圖象。
(教師先引導(dǎo)學(xué)生思考,示范畫(huà)出反比例函數(shù)y= 的圖象,再讓學(xué)生嘗試畫(huà)出反比例函數(shù)y=- 的圖象。)
設(shè)計(jì)意圖:
通過(guò)畫(huà)反比例函數(shù)的圖象使學(xué)生進(jìn)一步了解用描點(diǎn)的方法畫(huà)函數(shù)圖象的基本步驟,其他函數(shù)的圖象奠定基礎(chǔ),同時(shí)也培養(yǎng)了學(xué)生動(dòng)手操作能力。
師生形為:
學(xué)生可以先自己動(dòng)手畫(huà)圖,相互觀摩。
在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:
1學(xué)生能否順利進(jìn)行三種表示方法的相互轉(zhuǎn)換:
2是否熟悉作出函數(shù)圖象的主要步驟,會(huì)作反比例函數(shù)的圖象;
3在動(dòng)手作圖的過(guò)程中,能否勤于動(dòng)手,樂(lè)于探索。
比較y= 、y=- 的圖象有什么共同特征?它們之間有什么關(guān)系?
(由學(xué)生觀察思考,回答問(wèn)題,并使學(xué)生了解反比例函數(shù)的圖象是一種雙曲線。)
設(shè)計(jì)意圖:
學(xué)生通過(guò)觀察比較,總結(jié)兩個(gè)反比例函數(shù)圖象的共同特征(都是雙曲線),以及在平面直角坐標(biāo)系中的位置。在活動(dòng)中,讓學(xué)生自己去觀察、類比發(fā)現(xiàn),過(guò)程讓學(xué)生自己去感受,結(jié)論讓學(xué)生自己去總結(jié),實(shí)現(xiàn)學(xué)生主動(dòng)參與、探究新知的目的。
師生形為:
學(xué)生分組針對(duì)問(wèn)題結(jié)合畫(huà)出的圖象分類討論,歸納總結(jié)反比例函數(shù)圖象的共同點(diǎn),為后面性質(zhì)的探索打下基礎(chǔ)。
教師參與到學(xué)生的討論中去,積極引導(dǎo)。
(三)探索比較 發(fā)現(xiàn)規(guī)律
活動(dòng)3
問(wèn)題:
觀察反比例函數(shù)y= 與y=- 的圖象。
你能發(fā)現(xiàn)它們的共同特征以及不同點(diǎn)嗎?
每個(gè)函數(shù)的圖象分別位于哪幾個(gè)象限?
在每一個(gè)象限內(nèi),y隨x的變化如何變化?
由學(xué)生分小組討論,觀察思考后進(jìn)行分析、歸納,得到反比例函數(shù)y= 的'性質(zhì):
形狀: 反比例函數(shù)的圖象是由兩支雙曲線組成的因此稱反比例函數(shù)的圖象為雙曲線;
位置: 當(dāng)k0時(shí),兩支雙曲線分別位于第一,三象限內(nèi),在每個(gè)象限內(nèi)y隨x增大而減小;當(dāng)k0時(shí),兩支雙曲線分別位于第二,四象限內(nèi),在每個(gè)象限內(nèi)y隨x增大而增大;
任意一組變量的乘積是一個(gè)定值,即xy=k.
(注意:雙曲線的兩個(gè)分支都不會(huì)與x軸,y軸相交。)
學(xué)生通過(guò)對(duì)反比例函數(shù)圖象進(jìn)行觀察、分析,總結(jié)出了反比例函數(shù)的性質(zhì),使學(xué)生明白性質(zhì)的可靠性;通過(guò)對(duì)函數(shù)圖象的位置與k值符號(hào)關(guān)系的探討,以及反比例函數(shù)的兩個(gè)分支在相應(yīng)的象限內(nèi),y隨x值的增大(或減小)而增大(或減小)的探討,有利于加深學(xué)生對(duì)性質(zhì)的理解和掌握;使學(xué)生經(jīng)歷從特殊到一般的過(guò)程,體驗(yàn)知識(shí)產(chǎn)生、形成的過(guò)程,逐步達(dá)到培養(yǎng)學(xué)生抽象概括能力和激發(fā)求知欲望;同時(shí)通過(guò)對(duì)反比例函數(shù)增減性的討論,對(duì)學(xué)生進(jìn)行辯證唯物主義思想教育.
四、 運(yùn)用新知 拓展訓(xùn)練
設(shè)計(jì)意圖:
拓展練習(xí)是為了讓學(xué)生靈活運(yùn)用反比例函數(shù)性質(zhì)解決問(wèn)題,學(xué)生在研究問(wèn)題的特點(diǎn)時(shí),能夠緊扣性質(zhì)進(jìn)行分析,達(dá)到理解并掌握性質(zhì)的目的
師生形為:
學(xué)生獨(dú)立思考完成。
教師巡視,引導(dǎo)學(xué)困生完成任務(wù)。
五、歸納總結(jié) 布置作業(yè)
問(wèn)題:
本節(jié)課學(xué)習(xí)了哪些知識(shí)?在知識(shí)應(yīng)用過(guò)程中需要注意什么?你有什么收獲?
初三數(shù)學(xué)教案12
教學(xué)目標(biāo):
知識(shí)目標(biāo)1.經(jīng)歷探索圓的中心對(duì)稱性和旋轉(zhuǎn)不變性的過(guò)程;.
2.理解圓心角的概念,并掌握?qǐng)A心角定理。
3.理解“弧的度數(shù)等于它所對(duì)的圓心角的度數(shù)”這一性質(zhì)。
能力目標(biāo)體驗(yàn)利用旋轉(zhuǎn)變換來(lái)研究圓的性質(zhì)的思想方法,進(jìn)一步培養(yǎng)學(xué)生觀察、猜想、證明及應(yīng)用新知解決問(wèn)題的能力。
情感目標(biāo)用生活的實(shí)例激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的濃厚興趣,體驗(yàn)數(shù)學(xué)與生活的密切聯(lián)系,堅(jiān)定學(xué)好數(shù)學(xué)的信心,進(jìn)一步培養(yǎng)學(xué)生尊重知識(shí)、尊重科學(xué),熱愛(ài)生活的積極心態(tài)。
教學(xué)重點(diǎn):圓心角定理
教學(xué)難點(diǎn):根據(jù)圓的旋轉(zhuǎn)不變性推導(dǎo)出圓心角定理
教學(xué)過(guò)程:
一、設(shè)疑引新
你可曾想過(guò):水杯的蓋子為什么做成圓形?利用了圓的什么性質(zhì)?
前面我們已經(jīng)探究了圓的軸對(duì)稱性,利用這一性質(zhì)我們得到了垂徑定理及逆定理,它幫助解決了圓的許多問(wèn)題,那么圓還有哪些性質(zhì)呢?
二、探究新知
1、圓繞圓心旋轉(zhuǎn)180°后,仍與原來(lái)的圓重合——圓是中心對(duì)稱圖形,圓心是對(duì)稱中心。
2、圓繞圓心旋轉(zhuǎn)任意一個(gè)角度后,仍與原來(lái)的圓重合——圓的旋轉(zhuǎn)不變性。集體備課3.1《圓心角》解決課前疑問(wèn)。
3、頂點(diǎn)在圓心的角叫圓心角。如圖,集體備課3.1《圓心角》就是一個(gè)圓心角。判別下列各圖中的角是不是圓心角,并說(shuō)明理由。
4、探究圓心角定理:
集體備課3.1《圓心角》(1)實(shí)驗(yàn)操作:設(shè)集體備課3.1《圓心角》,把∠COD連同集體備課3.1《圓心角》、弦CD繞圓心O旋轉(zhuǎn),使OA與OC重合,結(jié)果發(fā)現(xiàn)OB與OD重合,弦AB與弦CD重合,集體備課3.1《圓心角》和集體備課3.1《圓心角》重合。
(2)讓學(xué)生猜想結(jié)論,并證明。
(3)同圓變等圓,結(jié)論成立。
5、圓心角定理:
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)弦的弦心距相等(補(bǔ)充)。
幾何表述:∵∠AOB=∠COD∴集體備課3.1《圓心角》=集體備課3.1《圓心角》,AB=CD,OE=OF
分析定理:。去掉“在同圓或等圓中”定理還成立嗎?
反例:兩個(gè)同心圓,顯然弦AB與弦CD不相等,集體備課3.1《圓心角》與集體備課3.1《圓心角》不相等。
集體備課3.1《圓心角》提醒學(xué)生注意:定理的成立必須有大前提“在同圓或等圓中”。
6、應(yīng)用新知:
例已知:如圖,∠1=∠2.求證:集體備課3.1《圓心角》
【變式】已知:如圖,∠1=∠2.
求證:AC=BD.,∠OBC=35°,
求弧AB的`度數(shù)和弧BC的度數(shù)。
9、拓展提高:
集體備課3.1《圓心角》三、課堂小結(jié)
通過(guò)本節(jié)課的學(xué)習(xí),你對(duì)圓有哪些新的認(rèn)識(shí)?
1.圓是中心對(duì)稱圖形,圓具有旋轉(zhuǎn)不變性。
2.、圓心角定理:
在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)弦的弦心距相等
3、弧的度數(shù):
1?的圓心角所對(duì)的弧叫做1?的弧。
弧的度數(shù)等于它所對(duì)的圓心角的度數(shù)。
四、作業(yè)布置
作業(yè)本3.3.1節(jié)
7、再探新知:你能將⊙O二等分嗎?
用直尺和圓規(guī)你能把⊙O四等分嗎?
你能將任意一個(gè)圓六等分嗎?
若按剛才這種方法把一個(gè)圓分成360份,則每一份的'圓心角的度數(shù)是1?,因?yàn)橄嗟鹊膱A心角所對(duì)的弧相等,所以每一份的圓心角所對(duì)的弧也相等。
我們把1?的圓心角所對(duì)的弧叫做1?的弧;〉亩葦(shù)等于它所對(duì)的圓心角的度數(shù)。
集體備課3.1《圓心角》寫(xiě)法:若∠COD=80°,則CD的度數(shù)是80°
注:不可寫(xiě)成集體備課3.1《圓心角》=∠COD=80°,但可寫(xiě)成集體備課3.1《圓心角》=m∠COD=80°
8、鞏固新知:如圖:已知在⊙O中,∠AOB=45°
初三數(shù)學(xué)教案13
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
使學(xué)生知道當(dāng)直角三角形的銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也都固定這一事實(shí).
。ǘ┠芰τ(xùn)練點(diǎn)
逐步培養(yǎng)學(xué)生會(huì)觀察、比較、分析、概括等邏輯思維能力.
(三)德育滲透點(diǎn)
引導(dǎo)學(xué)生探索、發(fā)現(xiàn),以培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神和良好的學(xué)習(xí)習(xí)慣.
二、教學(xué)重點(diǎn)、難點(diǎn)
1.重點(diǎn):使學(xué)生知道當(dāng)銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也是固定的這一事實(shí).
2.難點(diǎn):學(xué)生很難想到對(duì)任意銳角,它的對(duì)邊、鄰邊與斜邊的比值也是固定的事實(shí),關(guān)鍵在于教師引導(dǎo)學(xué)生比較、分析,得出結(jié)論.
三、教學(xué)步驟
。ㄒ唬┟鞔_目標(biāo)
1.如圖6-1,長(zhǎng)5米的梯子架在高為3米的墻上,則A、B間距離為多少米?
2.長(zhǎng)5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?
3.若長(zhǎng)5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?
4.若長(zhǎng)5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?
前兩個(gè)問(wèn)題學(xué)生很容易回答.這兩個(gè)問(wèn)題的設(shè)計(jì)主要是引起學(xué)生的回憶,并使學(xué)生意識(shí)到,本章要用到這些知識(shí).但后兩個(gè)問(wèn)題的設(shè)計(jì)卻使學(xué)生感到疑惑,這對(duì)初三年級(jí)這些好奇、好勝的學(xué)生來(lái)說(shuō),起到激起學(xué)生的學(xué)習(xí)興趣的作用.同時(shí)使學(xué)生對(duì)本章所要學(xué)習(xí)的內(nèi)容的特點(diǎn)有一個(gè)初步的了解,有些問(wèn)題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識(shí)是不能解決的,解決這類問(wèn)題,關(guān)鍵在于找到一種新方法,求出一條邊或一個(gè)未知銳角,只要做到這一點(diǎn),有關(guān)直角三角形的其他未知邊角就可用學(xué)過(guò)的知識(shí)全部求出來(lái).
通過(guò)四個(gè)例子引出課題.
。ǘ┱w感知
1.請(qǐng)每一位同學(xué)拿出自己的三角板,分別測(cè)量并計(jì)算30°、45°、60°角的對(duì)邊、鄰邊與斜邊的比值.
學(xué)生很快便會(huì)回答結(jié)果:無(wú)論三角尺大小如何,其比值是一個(gè)固定的值.程度較好的學(xué)生還會(huì)想到,以后在這些特殊直角三角形中,只要知道其中一邊長(zhǎng),就可求出其他未知邊的長(zhǎng).
2.請(qǐng)同學(xué)畫(huà)一個(gè)含40°角的直角三角形,并測(cè)量、計(jì)算40°角的對(duì)邊、鄰邊與斜邊的比值,學(xué)生又高興地發(fā)現(xiàn),不論三角形大小如何,所求的比值是固定的.大部分學(xué)生可能會(huì)想到,當(dāng)銳角取其他固定值時(shí),其對(duì)邊、鄰邊與斜邊的比值也是固定的嗎?
這樣做,在培養(yǎng)學(xué)生動(dòng)手能力的同時(shí),也使學(xué)生對(duì)本節(jié)課要研究的知識(shí)有了整體感知,喚起學(xué)生的求知欲,大膽地探索新知.
。ㄈ┲攸c(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過(guò)程
1.通過(guò)動(dòng)手實(shí)驗(yàn),學(xué)生會(huì)猜想到“無(wú)論直角三角形的銳角為何值,它的對(duì)邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個(gè)命題呢?學(xué)生這時(shí)的思維很活躍.對(duì)于這個(gè)問(wèn)題,部分學(xué)生可能能解決它.因此教師此時(shí)應(yīng)讓學(xué)生展開(kāi)討論,獨(dú)立完成.
2.學(xué)生經(jīng)過(guò)研究,也許能解決這個(gè)問(wèn)題.若不能解決,教師可適當(dāng)引導(dǎo):
若一組直角三角形有一個(gè)銳角相等,可以把其
頂點(diǎn)A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上.這樣同學(xué)們能解決這個(gè)問(wèn)題嗎?引導(dǎo)學(xué)生獨(dú)立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的對(duì)邊、鄰邊與斜邊的比值,是一個(gè)固定值.
通過(guò)引導(dǎo),使學(xué)生自己獨(dú)立掌握了重點(diǎn),達(dá)到知識(shí)教學(xué)目標(biāo),同時(shí)培養(yǎng)學(xué)生能力,進(jìn)行了德育滲透.
而前面導(dǎo)課中動(dòng)手實(shí)驗(yàn)的設(shè)計(jì),實(shí)際上為突破難點(diǎn)而設(shè)計(jì).這一設(shè)計(jì)同時(shí)起到培養(yǎng)學(xué)生思維能力的作用.
練習(xí)題為 作了孕伏同時(shí)使學(xué)生知道任意銳角的對(duì)邊與斜邊的比值都能求出來(lái).
(四)總結(jié)與擴(kuò)展
1.引導(dǎo)學(xué)生作知識(shí)總結(jié):本節(jié)課在復(fù)習(xí)勾股定理及含30°角直角三角形的性質(zhì)基礎(chǔ)上,通過(guò)動(dòng)手實(shí)驗(yàn)、證明,我們發(fā)現(xiàn),只要直角三角形的銳角固定,它的對(duì)邊、鄰邊與斜邊的比值也是固定的.
教師可適當(dāng)補(bǔ)充:本節(jié)課經(jīng)過(guò)同學(xué)們自己動(dòng)手實(shí)驗(yàn),大膽猜測(cè)和積極思考,我們發(fā)現(xiàn)了一個(gè)新的結(jié)論,相信大家的邏輯思維能力又有所提高,希望大家發(fā)揚(yáng)這種創(chuàng)新精神,變被動(dòng)學(xué)知識(shí)為主動(dòng)發(fā)現(xiàn)問(wèn)題,培養(yǎng)自己的創(chuàng)新意識(shí).
2.?dāng)U展:當(dāng)銳角為30°時(shí),它的對(duì)邊與斜邊比值我們知道.今天我們又發(fā)現(xiàn),銳角任意時(shí),它的對(duì)邊與斜邊的比值也是固定的.如果知道這個(gè)比值,已知一邊求其他未知邊的問(wèn)題就迎刃而解了.看來(lái)這個(gè)比值很重要,下節(jié)課我們就著重研究這個(gè)“比值”,有興趣的同學(xué)可以提前預(yù)習(xí)一下.通過(guò)這種擴(kuò)展,不僅對(duì)正、余弦概念有了初步印象,同時(shí)又激發(fā)了學(xué)生的興趣.
四、布置作業(yè)
本節(jié)課內(nèi)容較少,而且是為正、余弦概念打基礎(chǔ)的,因此課后應(yīng)要求學(xué)生預(yù)習(xí)正余弦概念.
五、板書(shū)設(shè)計(jì)
第十四章 解直角三角形
一、銳角三角函數(shù) 證明:------------------
結(jié)論:--------------------
練習(xí):---------------------
正弦和余弦(二)
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn)
使學(xué)生初步了解正弦、余弦概念;能夠較正確地用sinA、cosA表示直角三角形中兩邊的比;熟記特殊角30°、45°、60°角的正、余弦值,并能根據(jù)這些值說(shuō)出對(duì)應(yīng)的銳角度數(shù).
(二)能力訓(xùn)練點(diǎn)
逐步培養(yǎng)學(xué)生觀察、比較、分析、概括的思維能力.
(三)德育滲透點(diǎn)
滲透教學(xué)內(nèi)容中普遍存在的運(yùn)動(dòng)變化、相互聯(lián)系、相互轉(zhuǎn)化等觀點(diǎn).
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):使學(xué)生了解正弦、余弦概念.
2.教學(xué)難點(diǎn):用含有幾個(gè)字母的符號(hào)組sinA、cosA表示正弦、余弦;正弦、余弦概念.
三、教學(xué)步驟
(一)明確目標(biāo)
1.引導(dǎo)學(xué)生回憶“直角三角形銳角固定時(shí),它的對(duì)邊與斜邊的比值、鄰邊與斜邊的比值也是固定的.”
2.明確目標(biāo):這節(jié)課我們將研究直角三角形一銳角的對(duì)邊、鄰邊與斜邊的比值——正弦和余弦.
(二)整體感知
只要知道三角形任一邊長(zhǎng),其他兩邊就可知.
而上節(jié)課我們發(fā)現(xiàn):只要直角三角形的銳角固定,它的對(duì)邊與斜邊、鄰邊與斜邊的比值也固定.這樣只要能求出這個(gè)比值,那么求直角三角形未知邊的問(wèn)題也就迎刃而解了.
通過(guò)與“30°角所對(duì)的直角邊等于斜邊的一半”相類比,學(xué)生自然產(chǎn)生想學(xué)習(xí)的欲望,產(chǎn)生濃厚的學(xué)習(xí)興趣,同時(shí)對(duì)以下要研究的內(nèi)容有了大體印象.
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過(guò)程
正弦、余弦的概念是全章知識(shí)的基礎(chǔ),對(duì)學(xué)生今后的.學(xué)習(xí)與工作都十分重要,因此確定它為本課重點(diǎn),同時(shí)正、余弦概念隱含角度與數(shù)之間具有一一對(duì)應(yīng)的函數(shù)思想,又用含幾個(gè)字母的符號(hào)組來(lái)表示,因此概念也是難點(diǎn).
在上節(jié)課研究的基礎(chǔ)上,引入正、余弦,“把對(duì)邊、鄰邊與斜邊的比值稱做正弦、余弦”.如圖6-3:
請(qǐng)學(xué)生結(jié)合圖形敘述正弦、余弦定義,以培養(yǎng)學(xué)生概括能力及語(yǔ)言表達(dá)能力.教師板書(shū):在△ABC中,∠C為直角,我們把銳角A的對(duì)邊與斜邊的比叫做∠A的正弦,記作sinA,銳角A的鄰邊與斜邊的比叫做∠A的余弦,記作cosA.
若把∠A的對(duì)邊BC記作a,鄰邊AC記作b,斜邊AB記作c,則
引導(dǎo)學(xué)生思考:當(dāng)∠A為銳角時(shí),sinA、cosA的值會(huì)在什么范圍內(nèi)?得結(jié)論0<sinA<1,0<cosA<1(∠A為銳角).這個(gè)問(wèn)題對(duì)于較差學(xué)生來(lái)說(shuō)有些難度,應(yīng)給學(xué)生充分思考時(shí)間,同時(shí)這個(gè)問(wèn)題也使學(xué)生將數(shù)與形結(jié)合起來(lái).
教材例1的設(shè)置是為了鞏固正弦概念,通過(guò)教師示范,使學(xué)生會(huì)求正弦,這里不妨增問(wèn)“cosA、cosB”,經(jīng)過(guò)反復(fù)強(qiáng)化,使全體學(xué)生都達(dá)到目標(biāo),更加突出重點(diǎn).
例1 求出圖6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.
學(xué)生練習(xí)1中1、2、3.
讓每個(gè)學(xué)生畫(huà)含30°、45°的直角三角形,分別求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.這一練習(xí)既用到以前的知識(shí),又鞏固正弦、余弦的概念,經(jīng)過(guò)學(xué)習(xí)親自動(dòng)筆計(jì)算后,對(duì)特殊角三角函數(shù)值印象很深刻.
例2 求下列各式的值:
為了使學(xué)生熟練掌握特殊角三角函數(shù)值,這里還應(yīng)安排六個(gè)小題:
(1)sin45°+cos45; (2)sin30°cos60°;
在確定每個(gè)學(xué)生都牢記特殊角的三角函數(shù)值后,引導(dǎo)學(xué)生思考,“請(qǐng)大家觀察特殊角的正弦和余弦值,猜測(cè)一下,sin20°大概在什么范圍內(nèi),cos50°呢?”這樣的引導(dǎo)不僅培養(yǎng)學(xué)生的觀察力、注意力,而且培養(yǎng)學(xué)生勇于思考、大膽創(chuàng)新的精神.還可以進(jìn)一步請(qǐng)成績(jī)較好的同學(xué)用語(yǔ)言來(lái)敘述“銳角的正弦值隨角度增大而增大,余弦值隨角度增大而減。睘椴檎嘞冶碜鳒(zhǔn)備.
(四)總結(jié)、擴(kuò)展
首先請(qǐng)學(xué)生作小結(jié),教師適當(dāng)補(bǔ)充,“主要研究了銳角的正弦、余弦概念,已知直角三角形的兩邊可求其銳角的正、余弦值.知道任意銳角A的正、余弦值都在0~1之間,即
0<sinA<1, 0<cosA<1(∠A為銳角).
還發(fā)現(xiàn)Rt△ABC的兩銳角∠A、∠B,sinA=cosB,cosA=sinB.正弦值隨角度增大而增大,余弦值隨角度增大而減小.”
四、布置作業(yè)
教材習(xí)題14.1中A組3.
預(yù)習(xí)下一課內(nèi)容.
五、板書(shū)設(shè)計(jì)
初三數(shù)學(xué)教案14
一、教學(xué)目標(biāo):
1、了解作為證明基礎(chǔ)的幾條公理的內(nèi)容,掌握證明的基本步驟和書(shū)寫(xiě)格式。
2、經(jīng)歷“探索-發(fā)現(xiàn)-猜想-證明”的過(guò)程。能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理。
3、結(jié)合實(shí)例體會(huì)反證法的含義。
二、教學(xué)重點(diǎn):
了解作為證明基礎(chǔ)的幾條公理的`內(nèi)容,通過(guò)等腰三角形性質(zhì)證明,掌握證明的基本步驟和書(shū)寫(xiě)格式。
教學(xué)難點(diǎn):能夠用綜合法證明等腰三角形的關(guān)性質(zhì)定理和判定定理(特別是證明等腰三角形性質(zhì)時(shí)輔助線做法)。
三、教學(xué)方法:
觀察法。
四、教學(xué)過(guò)程:
復(fù)習(xí):
1、什么是等腰三角形?
2、你會(huì)畫(huà)一個(gè)等腰三角形嗎?并把你畫(huà)的等腰三角形栽剪下來(lái)。
3、試用折紙的辦法回憶等腰三角形有哪些性質(zhì)?
新課講解:
在《證明(一)》一章中,我們已經(jīng)證明了有關(guān)平行線的一些結(jié)論,運(yùn)用下面的公理和已經(jīng)證明的定理,我們還可以證明有關(guān)三角形的一些結(jié)論。
同學(xué)們和我一起來(lái)回憶上學(xué)期學(xué)過(guò)的公理
本套教材選用如下命題作為公理:
1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行;
2.兩條平行線被第三條直線所截,同位角相等;
3.兩邊夾角對(duì)應(yīng)相等的兩個(gè)三角形全等;(SAS)
4.兩角及其夾邊對(duì)應(yīng)相等的兩個(gè)三角形全等;(ASA)
5.三邊對(duì)應(yīng)相等的兩個(gè)三角形全等;(SSS)
6.全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等。
由公理5、3、4、6可容易證明下面的推論:
推論兩角及其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等。(AAS)證明過(guò)程:
已知:∠A=∠D,∠B=∠E,BC=EF
求證:△ABC≌△DEF
證明:∵∠A+∠B+∠C=180°,
∠D+∠E+∠F=180°
(三角形內(nèi)角和等于180°)
∴∠C=180°-(∠A+∠B)
∠F=180°-(∠D+∠E)
又∵∠A=∠D,∠B=∠E(已知)
∴∠C=∠F
又∵BC=EF(已知)
∴△ABC≌△DEF(ASA)
定理:等腰三角形的兩個(gè)底角相等。
這一定理可以簡(jiǎn)單敘述為:等邊對(duì)等角。已知:如圖,在ABC中,AB=AC。
初三數(shù)學(xué)教案15
1.1反比例函數(shù)
教學(xué)目標(biāo)
【知識(shí)與技能】
理解反比例函數(shù)的概念,根據(jù)實(shí)際問(wèn)題能列出反比例函數(shù)關(guān)系式。
【過(guò)程與方法】
經(jīng)歷從實(shí)際問(wèn)題抽象出反比例函數(shù)的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力。
【情感態(tài)度】
培養(yǎng)觀察、推理、分析能力,體會(huì)由實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型,認(rèn)識(shí)反比例函數(shù)的應(yīng)用價(jià)值。
【教學(xué)重點(diǎn)】
理解反比例函數(shù)的概念,能根據(jù)已知條件寫(xiě)出函數(shù)解析式。
【教學(xué)難點(diǎn)】
能根據(jù)實(shí)際問(wèn)題中的條件確定反比例函數(shù)的解析式,體會(huì)函數(shù)的模型思想。
教學(xué)過(guò)程
一、情景導(dǎo)入,初步認(rèn)知
1、復(fù)習(xí)小學(xué)已學(xué)過(guò)的反比例關(guān)系,例如:
。1)當(dāng)路程s一定,時(shí)間t與速度v成反比例,即vt=s(s是常數(shù))
。2)當(dāng)矩形面積一定時(shí),長(zhǎng)a和寬b成反比例,即ab=S(S是常數(shù))
2、電流I、電阻R、電壓U之間滿足關(guān)系式U=IR,當(dāng)U=220V時(shí),請(qǐng)你用含R的代數(shù)式表示I嗎?
【教學(xué)說(shuō)明】對(duì)相關(guān)知識(shí)的復(fù)習(xí),為本節(jié)課的學(xué)習(xí)打下基礎(chǔ)。
二、思考探究,獲取新知
探究1:反比例函數(shù)的概念
。1)一群選手在進(jìn)行全程為3000米的_比賽時(shí),各選手的平均速度v(m/s)與所用時(shí)間t(s)之間有怎樣的關(guān)系?并寫(xiě)出它們之間的關(guān)系式。
。2)利用(1)的關(guān)系式完成下表:
。3)隨著時(shí)間t的變化,平均速度v發(fā)生了怎樣的變化?
(4)平均速度v是所用時(shí)間t的函數(shù)嗎?為什么?
。5)觀察上述函數(shù)解析式,與前面學(xué)的一次函數(shù)有什么不同?這種函數(shù)有什么特點(diǎn)?
【歸納結(jié)論】一般地,如果兩個(gè)變量x,y之間可以表示成y=(k為常數(shù)且k≠0)的形式,那么稱y是x的反比例函數(shù)。其中x是自變量,常數(shù)k稱為反比例函數(shù)的比例系數(shù)。
【教學(xué)說(shuō)明】先讓學(xué)生進(jìn)行小組合作交流,再進(jìn)行全班性的問(wèn)答或交流。學(xué)生用自己的語(yǔ)言說(shuō)明兩個(gè)變量間的關(guān)系為什么可以看作函數(shù),了解所討論的函數(shù)的表達(dá)形式。探究2:反比例函數(shù)的自變量的取值范圍思考:在上面的問(wèn)題中,對(duì)于反比例函數(shù)v=3000/t,其中自變量t可以取哪些值呢?分析:反比例函數(shù)的自變量的取值范圍是所有非零實(shí)數(shù),但是在實(shí)際問(wèn)題中,應(yīng)該根據(jù)具體情況來(lái)確定該反比例函數(shù)的自變量取值范圍。由于t代表的是時(shí)間,且時(shí)間不能為負(fù)數(shù),所有t的取值范圍為t>0.
【教學(xué)說(shuō)明】教師組織學(xué)生討論,提問(wèn)學(xué)生,師生互動(dòng)。
三、運(yùn)用新知,深化理解
1、見(jiàn)教材P3例題。
2、下列函數(shù)關(guān)系中,哪些是反比例函數(shù)?
。1)已知平行四邊形的面積是12cm2,它的一邊是acm,這邊上的高是hcm,則a與h的函數(shù)關(guān)系;
。2)壓強(qiáng)p一定時(shí),壓力F與受力面積S的關(guān)系;
。3)功是常數(shù)W時(shí),力F與物體在力的`方向上通過(guò)的距離s的函數(shù)關(guān)系。
(4)某鄉(xiāng)糧食總產(chǎn)量為m噸,那么該鄉(xiāng)每人平均擁有糧食y(噸)與該鄉(xiāng)人口數(shù)x的函數(shù)關(guān)系式。
分析:確定函數(shù)是否為反比例函數(shù),就是看它們的解析式經(jīng)過(guò)整理后是否符合y=(k是常數(shù),k≠0)。所以此題必須先寫(xiě)出函數(shù)解析式,后解答。
解:
(1)a=12/h,是反比例函數(shù);
(2)F=pS,是正比例函數(shù);
(3)F=W/s,是反比例函數(shù);
(4)y=m/x,是反比例函數(shù)。
3、當(dāng)m為何值時(shí),函數(shù)y=是反比例函數(shù),并求出其函數(shù)解析式。分析:由反比例函數(shù)的定義易求出m的值。解:由反比例函數(shù)的定義可知:2m-2=1,m=3/2.所以反比例函數(shù)的解析式為y=。
4、當(dāng)質(zhì)量一定時(shí),二氧化碳的體積V與密度ρ成反比例。且V=5m3時(shí),ρ=1.98kg/m3
。1)求p與V的函數(shù)關(guān)系式,并指出自變量的取值范圍。
。2)求V=9m3時(shí),二氧化碳的密度。
解:略
5、已知y=y1+y2,y1與x成正比例,y2與x2成反比例,且x=2與x=3時(shí),y的值都等于19.求y與x間的函數(shù)關(guān)系式。
分析:y1與x成正比例,則y1=k1x,y2與x2成反比例,則y2=k2x2,又由y=y1+y2,可知,y=k1x+k2x2,只要求出k1和k2即可求出y與x間的函數(shù)關(guān)系式。
解:因?yàn)閥1與x成正比例,所以y1=k1x;因?yàn)閥2與x2成反比例,所以y2=,而y=y1+y2,所以y=k1x+,當(dāng)x=2與x=3時(shí),y的值都等于19.
【教學(xué)說(shuō)明】加深對(duì)反比例函數(shù)概念的理解,及掌握如何求反比例函數(shù)的解析式。
四、師生互動(dòng)、課堂小結(jié)
先小組內(nèi)交流收獲和感想,而后以小組為單位派代表進(jìn)行總結(jié)。教師作以補(bǔ)充。
課后作業(yè)
布置作業(yè):教材“習(xí)題1.1”中第1、3、5題。
教學(xué)反思
學(xué)生對(duì)于反比例函數(shù)的概念理解的都很好,但在求函數(shù)解析式時(shí),解題不夠靈活,如解答第5題時(shí),不知如何設(shè)未知數(shù)。在這方面應(yīng)多加練習(xí)。
【初三數(shù)學(xué)教案】相關(guān)文章:
初三數(shù)學(xué)教案03-05
小學(xué)數(shù)學(xué)教案(精選)07-24
小學(xué)數(shù)學(xué)教案[經(jīng)典]08-02
[經(jīng)典]小學(xué)數(shù)學(xué)教案04-24
趣味數(shù)學(xué)教案02-28
初中數(shù)學(xué)教案05-28
(經(jīng)典)小學(xué)數(shù)學(xué)教案08-31
趣味的數(shù)學(xué)教案07-03
有趣的數(shù)學(xué)教案11-08