- 一元一次不等式教案 推薦度:
- 數(shù)學(xué)不等式的解集教案 推薦度:
- 高中不等式的教案 推薦度:
- 相關(guān)推薦
不等式教案
作為一名為他人授業(yè)解惑的教育工作者,總歸要編寫教案,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。那么應(yīng)當(dāng)如何寫教案呢?以下是小編幫大家整理的不等式教案,歡迎大家分享。
不等式教案1
復(fù)習(xí)鞏固解下列不等式:
①5x+54<x-1②2(1一3x)3x+20
、2(一3+x)<3(x+2)
、(x+5)3(x-5)-6
先讓學(xué)生板演、練習(xí),然后師生共同點(diǎn)評、訂正,指出解題中應(yīng)注意的地方,復(fù)習(xí)一元一次不等式的解法.讓學(xué)生在解題過程中有目的地思考,既可鞏固已學(xué)內(nèi)容,又為下面的新課做好鋪墊。
提出問題20xx年北京空氣質(zhì)量良好(二級以上)的天數(shù)與全年天數(shù)之比達(dá)到55%.若到20xx年這樣的比值要超過70%,那么,20xx年北京空氣質(zhì)量良好(二級以上)的天數(shù)至少要增加多少天?選擇學(xué)生感興趣的`問題,可以激發(fā)學(xué)習(xí)熱情,此題既承上啟下,又能增強(qiáng)學(xué)生的應(yīng)用意識。
解決問題1、20xx年北京空氣質(zhì)量良好的天數(shù)是多少?
2、用x表示20xx年增加的空氣質(zhì)量良好的天數(shù),則20xx年北京空氣質(zhì)量良好的天數(shù)是多少?
3、20xx年共有多少天?與x有關(guān)的哪個式子的值應(yīng)超過70%?這個式子表示什么?
4、怎樣解不等式在學(xué)生討論后,教師做解題過程示范.
5、比較解這個不等式與解方程的步驟,兩者有什么不同嗎?
在學(xué)生充分討論的基礎(chǔ)上,師生共同歸納得出:
解一元一次不等式與解一元一次方程類似,只是不等式兩邊同乘以(或除以)一個數(shù)時,要注意不等號的方向.解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x-a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為xa或xa)的形式.一連串的問題引發(fā)學(xué)生陣陣思考。
展示整個解題過程,有利于學(xué)生發(fā)現(xiàn)解一元一次不等式與
解一元一次方程的關(guān)系,初步感知實(shí)際問題對不等式解集的影響.
讓學(xué)生自己討論總結(jié),即可滲透類比思想,又能掌握注意點(diǎn).
鞏固新知1、解下列不等式,并在數(shù)軸上表示解集:
。1)(2)2、.當(dāng)x或y滿足什么條件時,下列關(guān)系成立?
。1)2(x+1)大于或等于1;
。2)4x與7的和不小于6;
(3)y與1的差不大于2y與3的差;
。4)3y與7的和的小于-2.學(xué)會舉一反三,鞏固已學(xué)知識。a)的形式.一連串的問題引發(fā)學(xué)生陣陣思考。展示整個解題過程,有利于學(xué)生發(fā)現(xiàn)解一元一次不等式與解一元一次方程的關(guān)系,初步感知實(shí)際問題對不等式解集的影響.讓學(xué)生自己討論總結(jié),即可滲透類比思想,又能掌握注意點(diǎn).鞏固新知1、解下列不等式,并在數(shù)軸上表示解集:(1)(2)2、.當(dāng)x或y滿足什么條件時,下列關(guān)系成立?(1)2(x+1)大于或等于1;(2)4x與7的和不小于6;(3)y與1的差不大于2y與3的差;(4)3y與7的和的小于-2.學(xué)會舉一反三,鞏固已學(xué)知識
不等式教案2
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R教學(xué)點(diǎn)
1.理解一元一次不等式組解集的概念,會利用數(shù)軸較簡單的一元一次不等式組。
2.掌握一元一次不等式組解集的幾種情況。
。ǘ┠芰τ(xùn)練點(diǎn)
通過利用數(shù)軸解不等式組,培養(yǎng)學(xué)生的觀察能力、分析能力、歸納總結(jié)能力。
。ㄈ┑掠凉B透點(diǎn)
通過不等式組解集的求法,培養(yǎng)學(xué)生的觀察與分析能力,滲透辯證唯物主義的觀點(diǎn)。
(四)美育滲透點(diǎn)
用數(shù)軸求不等式組的解集,滲透用數(shù)學(xué)圖形解題的直觀性、簡捷性的數(shù)學(xué)美。
二、學(xué)法引導(dǎo)
1.教學(xué)方法:引導(dǎo)發(fā)現(xiàn)法、觀察法、歸納總結(jié)法。
2.學(xué)生學(xué)法:學(xué)會利用數(shù)軸將兩個不等式的解集表示出來,并觀察出其公共部分,再小結(jié)出不等式組的解集。
三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法
(一)重點(diǎn)
理解一元一次不等式組解集的概念,會用數(shù)軸表示一元一次不等式組解集的幾種情況。
。ǘ╇y點(diǎn)
正確理解一元一次不等式組解集的含義。
。ㄈ┮牲c(diǎn)
弄清一元一次不等式解集和不等式組的解集的關(guān)系,以及對四種不等式組解集的一般形式的理解。
。ㄋ模┙鉀Q辦法
加強(qiáng)對不等式組解集含義的理解,并熟練掌握用數(shù)軸表示不等式解集,利用觀察法、歸納法即可掌握求不等式組解集的辦法。
四、課時安排
一課時.
五、教具學(xué)具準(zhǔn)備
直尺、鉛筆、投影儀或電腦、自制膠片。
六、師生互動活動設(shè)計
1.教師設(shè)計提問有關(guān)一元一次不等式的定義及其解集的概念,并復(fù)習(xí)用數(shù)軸表示一元一次不等式的解集的方法。
2.教示范一元一次不等式組解集的四種常規(guī)圖形的表示方法,并引導(dǎo)學(xué)生理解記憶它們。
3.通過反復(fù)的師生共練,從實(shí)踐中歸納小結(jié)出不等式組解集的規(guī)律。
七、教學(xué)步驟
。ㄒ唬┟鞔_目標(biāo)
本節(jié)課重點(diǎn)學(xué)習(xí)用數(shù)軸表示不等式組解集的方法,并能熟練地加以應(yīng)用。
。ǘ┱w感知
要正確表示出不等式組的解集的關(guān)鍵在于學(xué)會用數(shù)軸表示。若有解,必為其公共部分;若無公共部分,則為無解.并要正確地理解一元一次不等式組解集的規(guī)律。
(三)教學(xué)過程
1.創(chuàng)設(shè)情境,復(fù)習(xí)引入
(1)什么是一元一次不等式,不等式的解,不等式的解集,解不等式?
。2)已知一個數(shù)比2大但比4小,請?jiān)跀?shù)軸上表示數(shù)。
學(xué)生活動:口答(1)題.板演(2)題,如下圖所示:
教師分析:一個數(shù)比2大但比4小,說明取值使不等式與都成立,把一元一次不等式與合在一起,就組成了一個一元一次不等式組,記作在數(shù)軸上表示不等式①②的解集
可以看出,使不等式,都成立的值,是所有大于2并且小于4的`數(shù)(記作),它們是不等式①、②的解集的公共部分,在數(shù)軸上表示成:
不等式①、②的解集的公共部分,叫做由不等式①、②組成的一元一次不等式組的解集。
【教法說明】通過學(xué)生板演,教師分析,使學(xué)生形成對不等式組解集的初步認(rèn)識,激發(fā)了他們應(yīng)用舊知識探索新知識的熱情。
2.探索新知,講授新課
。1)不等式組的解集:一般地,幾個一元一次不等式的解集的公共部分叫做由它們組成的不等式組的解集。
說明:求不等式組解集的關(guān)鍵是找不等式解集的“公共部分”。若有公共部分,公共部分即為解集;若無公共部分,則不等式組無解。
(2)解不等式組:求不等式組解集的過程叫解不等式組。
請同學(xué)們根據(jù)自己的理解,解答下列各題。
例1利用數(shù)軸判斷下列不等式組有無解集?若有解集,請求出。
、 ② ③ ④
學(xué)生活動:學(xué)生在練習(xí)本上完成,同時指定四個學(xué)生板演.板演完成后,由學(xué)生判斷是否正確。
解:① ②
不等式組解集為不等式組解集為
、 ④
不等式組解集為不等式組無解
【教法說明】教學(xué)時,可用彩筆在數(shù)軸上描出折線的公共部分,這樣可以使學(xué)生直觀、形象地理解不等式組解集的含義,并掌握解集的表示方法。
3.嘗試反饋,鞏固知識
利用數(shù)軸判斷下列不等式組有無解集?如有,請表示出來。
教學(xué)活動:獨(dú)立完成,同桌互閱,投影出示正確答案。
教師活動:抽查部分學(xué)生,糾正錯誤。
一元一次不等式組中,不等式個數(shù)多于兩個,解集求法有無變化呢?同學(xué)們通過解答下列各題,仔細(xì)體會。
利用數(shù)軸解下列不等式組:
學(xué)生活動:分析討論,嘗試得出答案;指名回答,與投影出示的正確解題過程對比.
答案:(1)(2)(3)(4)無解
4.變式訓(xùn)練,培養(yǎng)能力
單項(xiàng)選擇:
。1)不等式組的整數(shù)解是()
A.0,1 B.0 C.1 D.
。2)不等式組的負(fù)整數(shù)解是()
A.-2,0,-1 B.-2 C.-2,-1 D.不能確定
。3)不等式組的解集在數(shù)軸上表示正確的是()
。4)不等式組的解集在數(shù)軸上表示正確的為()
。5)根據(jù)圖中所示可知不等式組的解集為()
A.B.C.D.
學(xué)生活動:前后桌結(jié)組討論完成,各組以搶答方式說出答案.
參考答案:C,C,D,A,C
【教法說明】設(shè)置上述題組旨在訓(xùn)練學(xué)生的思維能力;以搶答形式完成則是為了激發(fā)學(xué)生探索知識的熱情.
(四)總結(jié)、擴(kuò)展
不等式組
1.圖示
2.折線特點(diǎn)
3.解集
4.解集與公共部分關(guān)系
折線的公共部分
即為不等式組的解集
無解若,不等式組的解集是什么?有規(guī)律可尋嗎?
【教法說明】學(xué)生通過實(shí)踐嘗試得到規(guī)律,以此揭示規(guī)律存在的一般性、必然性,既訓(xùn)練了學(xué)生的歸納總結(jié)能力,也充分發(fā)揮了主體作用.
注意問題:教學(xué)時,每組不等式不要超過三個,關(guān)鍵是使學(xué)生理解和掌握解不等式的方法,不宜過于難、過于多,避免重復(fù)的機(jī)械計算.
八、布置作業(yè)
(一)必做題:P78 1;P79 A組1.
。ǘ┻x擇題:
填空題:
1.不等式組的非負(fù)整數(shù)解是_______________.
2.若同時滿足與,則的取值范圍是______________.
3.一元一次不等式組()的解集為,則與的大小關(guān)系為____________.
【教法說明】補(bǔ)充題旨在訓(xùn)練學(xué)生的思維能力、應(yīng)變能力和解題靈活性.
參考答案
略.
九、板書設(shè)計
不等式教案3
各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。
下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計、效果評價六方面進(jìn)行說課。
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
。ǘ┙虒W(xué)內(nèi)容
本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。
二、教學(xué)目標(biāo)分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識目標(biāo)——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。
三、重難點(diǎn)分析
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。
要把握這個重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個二次”的關(guān)系。要突破這個難點(diǎn),讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析
。ㄒ唬⿲W(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。
五、課堂設(shè)計
本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。
。ㄒ唬﹦(chuàng)設(shè)情景,引出“三個一次”的關(guān)系
本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。
為此,我設(shè)計了以下幾個問題:
1、請同學(xué)們解以下方程和不等式:
、2x-7=0;②2x-70;③2x-70
學(xué)生回答,我板書。
2、我指出:2x-70和2x-70的解實(shí)際上只需利用不等式基本性質(zhì)就容易得到。
3、接著我提出:我們能否利用不等式的基本性質(zhì)來解一元二次不等式呢?學(xué)生可能感到很困惑。
4、為此,我引入一次函數(shù)y=2x-7,借助動畫從圖象上直觀認(rèn)識方程和不等式的解,得出以下三組重要關(guān)系:
、2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸
交點(diǎn)的橫坐標(biāo)。
②2x-70的解集正是函數(shù)y=2x-7的圖象
在x軸的上方的點(diǎn)的橫坐標(biāo)的集合。
③2x-70的解集正是函數(shù)y=2x-7的圖象
在x軸的下方的點(diǎn)的橫坐標(biāo)的`集合。
三組關(guān)系的得出,實(shí)際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問題的興趣。此時,學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來求不等式x2-x-60的解集。
。ǘ┍扰f悟新,引出“三個二次”的關(guān)系
為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進(jìn)行探究。
看函數(shù)y=x2-x-6的圖象并說出:
、俜匠蘹2-x-6=0的解是
x=-2或x=3 ;
、诓坏仁絰2-x-60的解集是
{x|x-2,或x3};
、鄄坏仁絰2-x-60的解集是
{x|-23}。
此時,學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。
學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時,圖象與x軸有兩個交點(diǎn);△=0時,圖象與x軸只有一個交點(diǎn);△0時,圖象與x輛沒有交點(diǎn)。)請同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?
(三)歸納提煉,得出“三個二次”的關(guān)系
1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對位置關(guān)系,寫出相關(guān)不等式的解集。
2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項(xiàng)系數(shù)由負(fù)化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強(qiáng)調(diào);也有的學(xué)生提出畫出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應(yīng)給予肯定。)
。ㄋ模⿷(yīng)用新知,熟練掌握一元二次不等式的解集
借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認(rèn)識,為鞏固所學(xué)知識,我們一起來完成以下例題:
例1、解不等式2x2-3x-20
解:因?yàn)棣?,方程2x2-3x-2=0的解是
x1= ,x2=2
所以,不等式的解集是
{ x| x ,或x2}
例1的解決達(dá)到了兩個目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。
下面我們接著學(xué)習(xí)課本例2。
例2 解不等式-3x2+6x2
課本例2的出現(xiàn)恰當(dāng)好處,一方面突出了“對于二次項(xiàng)系數(shù)是負(fù)數(shù)(即a0)的一元二次不等式,可以先把二次項(xiàng)系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對此例的解答極易出現(xiàn)寫錯解集(如出現(xiàn)“或”與“且”的錯誤)。
通過例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。
例3 解不等式4x2-4x+10
例4 解不等式-x2+2x-30
分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表揚(yáng)。
4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團(tuán)亂麻”、“一盤散沙”的局面,我和學(xué)生一起總結(jié)。
。ㄎ澹┛偨Y(jié)
解一元二次不等式的“四部曲”:
(1)把二次項(xiàng)的系數(shù)化為正數(shù)
(2)計算判別式Δ
(3)解對應(yīng)的一元二次方程
(4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集
。┳鳂I(yè)布置
為了使所有學(xué)生鞏固所學(xué)知識,我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。
。1)必做題:習(xí)題1.5的1、3題
。2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實(shí)數(shù)k的取值范圍。
。ㄆ撸┌鍟O(shè)計
一元二次不等式解法(1)
五、教學(xué)效果評價
本節(jié)課立足課本,著力挖掘,設(shè)計合理,層次分明。以“三個一次關(guān)系→三個二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點(diǎn),突破難點(diǎn)。在教學(xué)思想上既注重知識形成過程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗(yàn)求知的樂趣。
不等式教案4
教學(xué)目標(biāo)
1. 使學(xué)生掌握不等式的三條基本性質(zhì);
2. 培養(yǎng)學(xué)生觀察、分析、比較的能力,提高他們靈活地運(yùn)用所學(xué)知識解題的能力.
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):不等式的三條基本性質(zhì)的運(yùn)用.
難點(diǎn):不等式的基本性質(zhì)3的運(yùn)用.
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
1. 什么叫不等式?說出不等式的三條基本性質(zhì).
2. 當(dāng)x取下列數(shù)值時,不等式1-5x<16是否成立?
3,-4,-3,4,2.5,0,-1.
3. 用不等式表示下列數(shù)量關(guān)系:
(1) x的3倍大于x的2倍與5的差; (3)y的與x的的差小于2;
。2) y的一半與4的和是負(fù)數(shù); (4)5與a的4倍的差不是正數(shù).
4. 按照下列條件寫出仍然成立的不等式,并說明根據(jù)不等式的哪一條基本性質(zhì):
。1)m>n,兩邊都減去3; (2)m>n,兩邊同乘以3;
。3)m>n,兩邊同乘以-3; (4)m>n,兩邊同乘以-3;
。5)m>n,兩邊同乘以 .
(以上各題中,從第2題開始,用投影儀打在屏幕上.學(xué)生在回答上述問題時,如遇到困難,教師應(yīng)做適當(dāng)點(diǎn)撥)在學(xué)生回答完上述問題的基礎(chǔ)上,教師指出:本節(jié)課我們將通過學(xué)習(xí)例題和練習(xí),進(jìn)一步鞏固并熟練掌握不等式的基本性質(zhì),尤其是不等式基本性質(zhì)。
二、講授新課
例1 在下列各題橫線上填入不等號,使不等式成立.并說明是根據(jù)哪一條不等式基本性質(zhì).
(1)若a–3<9,則a_____12; (2)若-a<10,則a_____–10;
。3)若a>–1,則a_____–4; (4)若-a>,則a_____0.
答:(1)a<12,根據(jù)不等式基本性質(zhì)1. (2)a>-10,根據(jù)不等式基本性質(zhì)3.
。3)a>-4,根據(jù)不等式基本性質(zhì)2. (4)a<0,根據(jù)不等式基本性質(zhì)3.
(在講授本課時,應(yīng)啟發(fā)學(xué)和在添加不等號“>”或“<”時,要和題目中的已知條件進(jìn)行對比,觀察它是根據(jù)不等式的哪條基本性質(zhì),是怎樣由已知條件變形得到的.同時還應(yīng)強(qiáng)調(diào)在運(yùn)用不等式基本性質(zhì)3時,不等號要改變方向=
例2 已知,用a<0,“<”或“>”號填空:
。1)a+2_____2; (2)a-1_____–1; (3)3a_____0; (4)a-1______0; (5)a2 _______0; (6)a3______0; (7)a-1______0; (8)|a|______0。
答:(1)a+2<2,根據(jù)不等式基本性質(zhì)1. (2)a-1<-1,根據(jù)不等式基本性質(zhì)1.
。ǎ常┮?yàn)椋砤,根據(jù)不等式基本性質(zhì)2. (4)->0,根據(jù)不等式基本性質(zhì)3.
(5)因?yàn)閍<0,兩邊同乘以a<0,由不等式基本性質(zhì)3,得a2>0.
。ǎ叮┮?yàn)閍<0,兩邊同乘以a2>0,由不等式基本性質(zhì)2,得a3<0。
。ǎ罚┮?yàn)閍<0,兩邊同加上-1,由不等式基本性質(zhì)1,得a-1<-1.
又已知,-1<0,所以a-1<0.
。ǎ福┮?yàn)。a<0,所以a≠0,所以|a|>0.
(本例題除了進(jìn)一步運(yùn)用不等式的三條基本性質(zhì)外,還涉及了一些舊的基礎(chǔ)知識,如a<0表示a是負(fù)數(shù);a>0表示a是正數(shù);|a|是非負(fù)數(shù).后面幾個小題較靈活,條件由具體數(shù)字改為抽象的字母,這里字母代表正數(shù)還是代表負(fù)數(shù)是解決問題的關(guān)鍵)
例外 判斷下列各題的推導(dǎo)是否正確?為什么?(投影)(請學(xué)生回答)
。ǎ保┮?yàn)椋罚担荆担,所以-7.5<-5.7?(2)因?yàn)閍+8>4,,所以a>-4; (3)因?yàn)椋碼>4b,所以a>b; (4)因?yàn)閍<b,所以<>'
。ǎ担┮?yàn)椋荆保詀>4; (6)因?yàn)椋保荆,所以-a-1>-a-2;
。ǎ罚┮?yàn)椋常荆,所以3a>2a.
答:(1)正確,根據(jù)不等式基本性質(zhì)3. (2)正確,根據(jù)不等式基本性質(zhì)1.
。ǎ常┱_,根據(jù)不等式基本性質(zhì)2. (4)不對,根據(jù)不等式基本性質(zhì)3,應(yīng)改為>; (5)因?yàn)椋荆,所以a>4
答:(1)正確,根據(jù)不等式基本性質(zhì)3。 (2)正確,根據(jù)不等式基本性質(zhì)1。
(3)正確,根據(jù)不等式基本性質(zhì)2。 (4)不對,根據(jù)不等式基本性質(zhì)3,應(yīng)改為。
(5)不對,根據(jù)不等式基本性質(zhì)5,應(yīng)改為a<4。
(6)正確,根據(jù)不等式基本性質(zhì)1。 (7)不對,應(yīng)分情況逐一討論。
當(dāng)a>0時,3a>2a。(不等式基本性質(zhì)2)
當(dāng)a=0時,3a<2a。
當(dāng)a<0時,3a<2a。(不等式基本性質(zhì)3)
(當(dāng)學(xué)生在回答本題的過程當(dāng)中,當(dāng)遇到困難或問題時,教師應(yīng)做適當(dāng)引導(dǎo)、啟發(fā)、幫助)
三、課堂練習(xí)(投影)
1。按照下列條件,寫出仍能成立的不等式:
(1)由-2<-1,兩邊都加-a; (2)由-4x<0,兩邊都乘以-;
(3)由7>5,兩邊都乘以不為零的-a。
2?用“>”或“<”號填空:
(1)當(dāng)a-b<0時,a______b: (2)當(dāng)a<0,b<0時,ab_____0;
(3)當(dāng)a<0,b<0時,ab____0; (4)當(dāng)a>0,b<0時,ab____0;
(5)若a____0,b<0,則ab>0; (6)若<0,且b<0,則a_____0。
四、師生共同小結(jié)
在師生共同回顧本節(jié)課所學(xué)內(nèi)容的基礎(chǔ)上,教師指出:①在利用不等式的基本性質(zhì)進(jìn)行變形時,當(dāng)不等式的兩邊都乘以(或除以)同一個字母,字母代表什么數(shù)是問題的關(guān)鍵,這決定了是用不等式基本性質(zhì)2還是基本性質(zhì)3,也就是不等號是否要改變方向的'問題;②運(yùn)用不等式基本性質(zhì)3時,要變兩個號,一個性質(zhì)符號,另一個是不等號。
五、作業(yè)
1。根據(jù)不等式的基本性質(zhì),把下列不等式化成“x>a”或“x<a”的形式:
(1)x-1<0; (2)x>-x+6;
(3)3x>7; (4)-x<-3。
2。設(shè)a<b,用“>”或“>”號連接下列各題中的兩個代數(shù)式:
(1)a-1,b-1; (2)a+2,b+2; (3)2a,2b;
(4); (5); (6)-b,-a。
3。用“>”號或“<”號填空:
(1)若a-b<0,則a_____b; (2)若b<0,則a+b_____a;
(3)若a=0,則a+b_____b; (4)若<0,則ab_____;
(5)b<a<2,則(a-2)(b-2)____0;(2-a)(2-b)____;(2-a)(a-b)。
課堂教學(xué)設(shè)計說明
由于本節(jié)課的教學(xué)目標(biāo)是使學(xué)生進(jìn)一步掌握不等式基本性質(zhì),尤其是基本性質(zhì)3。故在設(shè)計教學(xué)過程時,注意在教師的主導(dǎo)作用下讓學(xué)生以練為主,從而使學(xué)生在初步掌握不等式的三條基本性質(zhì)的基礎(chǔ)上,通過口答,筆做,討論等不同的方式的練習(xí),提高學(xué)生將不等式正確、靈活進(jìn)行變形的能力。
不等式教案5
教學(xué)目標(biāo)
本節(jié)在介紹不等式的基礎(chǔ)上,介紹了不等式的解集并用數(shù)軸表示,介紹了解簡單不等式的方法,讓學(xué)生進(jìn)一步體會數(shù)形結(jié)合的作用。
知識與能力
1.使學(xué)生掌握不等式的解集的概念,以及什么是解不等式。
2.使學(xué)生育能夠借助數(shù)軸將不等式的解集直觀地表示出來,初步理解數(shù)形結(jié)合的思想。
過程與方法
1.通過回憶給學(xué)生介紹不等式的解集的概念。
2.教會學(xué)生怎樣在數(shù)軸上表示不等式的解集。
情感、態(tài)度與價值觀
1.通過反復(fù)的訓(xùn)練使學(xué)生認(rèn)識到數(shù)軸的重要性,培養(yǎng)其數(shù)形結(jié)合的思想。
2.通過觀察、歸納、類比、推斷而獲得不等式的解集與數(shù)軸上的點(diǎn)之間的關(guān)系,體驗(yàn)數(shù)學(xué)活動充滿探索性與創(chuàng)造性。
教學(xué)重、難點(diǎn)及教學(xué)突破
重點(diǎn)
1.認(rèn)識不等式的解集的概念。
2.將不等式的解集表示在數(shù)軸上。
難點(diǎn)
學(xué)生對不等式的解是一個集合可能會不太理解。
教學(xué)突破
由于受方程思想的影響,學(xué)生對不等式的解集的接受和理解可能會有一定的困難,建議教師能結(jié)合簡單的不等式和實(shí)際問題讓學(xué)生體會不等式的解可以是一個集合,并組織學(xué)生討論舉例,加深理解。
另外,應(yīng)在本節(jié)的過程中讓學(xué)生能理解在數(shù)軸上表示不等式的解集,讓他們熟悉數(shù)形結(jié)合的思想。
教學(xué)步驟
一、新課導(dǎo)入
1.回顧提問:同學(xué)們,我們已經(jīng)學(xué)習(xí)了不等式,F(xiàn)在我們一起回顧一下什么是不等式,以及有關(guān)數(shù)軸的知識。
學(xué)生用自己的語言描述不等式的定義,并基本說出數(shù)軸的三要素是:原點(diǎn)、正方向、單位長度。能將有理數(shù)在數(shù)軸上表示出來。
2.創(chuàng)設(shè)情景:我們現(xiàn)在知道了不等式的解不唯一,那么我們?nèi)绾螌⒉坏仁降慕馊勘硎境鰜砟?這就是我們這節(jié)課要解決的問題。
二、不等式的解集
1.講述不等式的解集的定義,引導(dǎo)學(xué)生觀察不等式x+2>5,并說出-3 、-2 、 3.5 、 7中哪些是不等式的解,哪些不是?-3 、-2不是不等式x+2>5的解,3.5 、 7是不等式的解。
2.給出“解不等式”的概念,并就上述例題由不完全歸納法給出不等式x+2>5的解集是x>3 。
3.將x>3在數(shù)軸上表示出來,并以此圖為例講述在數(shù)軸上表示基本不等式的方法:(1)在數(shù)軸上找到3;(2)向右表示比3大的點(diǎn);(3)空心點(diǎn)表示不含有3,所以有下圖。
讓學(xué)生自己動手畫出x ≤ 3,并找學(xué)生上臺板演。
4.就學(xué)生在黑板上的'板演,指出畫圖應(yīng)注意的事項(xiàng),并讓學(xué)生觀察前后兩圖的區(qū)別。
通過對比兩圖的不同,發(fā)現(xiàn)區(qū)別是大于和小于導(dǎo)致圖上所取的方向不同,有等號和沒等號導(dǎo)致空心和實(shí)心的區(qū)別。
5.給出適當(dāng)?shù)睦},鞏固本節(jié)內(nèi)容。
本課總結(jié)
這節(jié)課主要學(xué)習(xí)了什么是不等式的解集,并教學(xué)生在數(shù)軸上表示不等式的解集,體會數(shù)形結(jié)合的思想。
教學(xué)探討與反思
為了提高數(shù)學(xué)課的教學(xué)效果,教師必須使課堂教學(xué)過程符合學(xué)生的認(rèn)知規(guī)律,并讓學(xué)生參與到課堂教學(xué)活動中來,使他們真正成為課堂教學(xué)的主體。教師對課堂教學(xué)的設(shè)計,應(yīng)著眼在為學(xué)生個性品質(zhì)的優(yōu)化創(chuàng)設(shè)最佳課堂教學(xué)環(huán)境。教師引導(dǎo)學(xué)生參與的是數(shù)學(xué)思維活動。
不等式教案6
認(rèn)識不等式
教學(xué)目標(biāo):
通過對具體實(shí)例的學(xué)習(xí),使學(xué)生能夠了解生活中的不等量關(guān)系,理解不等式的概念,知道什么是不等式的解,為以后學(xué)習(xí)不等式的解法奠定基礎(chǔ).
知識與能力:
1.通過對具體事例的分析和探索,得到生活中不等量的關(guān)系.
2.通過理解得到不等式的概念,從而使學(xué)生經(jīng)歷實(shí)際問題中數(shù)量的分析、抽象過程,體會現(xiàn)實(shí)中有各種各樣錯綜復(fù)雜的數(shù)量關(guān)系.
3.了解不等式的意義,知道不等式是用來刻畫生活中的數(shù)量關(guān)系的
4.知道什么是不等式的解.
過程與方法:
1.引導(dǎo)學(xué)生分析具體事例,從對具體事例的分析中得到不等量關(guān)系.
2.引導(dǎo)并幫助學(xué)生列出不等式,分析不等式的成立條件.
3.通過分析、抽象得到不等式的概念和不等式的解的概念.
4.通過習(xí)題鞏固和加深對概念的理解.
情感、態(tài)度與價值觀:
1.通過學(xué)生的分析和抽象過程使他們體會現(xiàn)實(shí)中錯綜復(fù)雜的數(shù)量關(guān)系,從而培養(yǎng)其抽象思維能力.
2.通過分組討論學(xué)習(xí),體會在解決具體問題的過程中與他人合作的重要性,培養(yǎng)學(xué)生的團(tuán)體協(xié)作精神,使學(xué)生獲得合作交流的`學(xué)習(xí)方式.
3.通過聯(lián)系與發(fā)展、對立與統(tǒng)一的思考方法對學(xué)生進(jìn)行辯證唯物主義教育.
4.通過創(chuàng)設(shè)問題串,讓學(xué)生仔細(xì)觀察、對比、歸納、整理,嘗試對有理數(shù)進(jìn)行分類,體驗(yàn)教學(xué)活動充滿著探索性和創(chuàng)造性.
教學(xué)重、難點(diǎn)及教學(xué)突破
重點(diǎn): 不等式的概念和不等式的解的概念.
難點(diǎn): 對文字表述的數(shù)量關(guān)系能列出不等式.
教學(xué)突破: 由于學(xué)生在以前已經(jīng)對數(shù)量的大小關(guān)系和含數(shù)字的不等式有所了解,但還沒有接觸過含未知數(shù)的不等式,在學(xué)生分析問題的時候注意引入現(xiàn)實(shí)中大量存在的數(shù)量間的不等關(guān)系,研究它們的變化規(guī)律,使學(xué)生知道用不等式解決實(shí)際問題的方便之處. 在本節(jié)的教學(xué)中能夠在組織學(xué)生討論的過程中適當(dāng)?shù)貪B透變量的知識,讓學(xué)生感受其中的函數(shù)思想,并引導(dǎo)學(xué)生發(fā)現(xiàn)不等式的解與方程的解之間的區(qū)別.在處理本節(jié)難點(diǎn)時指導(dǎo)學(xué)生練習(xí)有理數(shù)和代數(shù)式的知識,準(zhǔn)確譯出不等式.
教學(xué)過程:
一. 研究問題:
世紀(jì)公園的票價是:每人5元,一次購票滿30張可少收1元.某班有27名少先隊(duì)員去世公園進(jìn)行活動.當(dāng)領(lǐng)隊(duì)王小華準(zhǔn)備好了零錢到售票處買了27張票時,愛動腦的李敏同紀(jì)學(xué)喊住了王小華,提議買30張票.但有的同學(xué)不明白.明明只有27個人,買30張票,豈不浪費(fèi)嗎?
那么,究竟李敏的提議對不對呢?是不是真的浪費(fèi)呢
二. 新課探究:分析上面的問題:設(shè)有x人要進(jìn)世紀(jì)公園,①若x30,應(yīng)該如何買票? ②若x30, 則又該如何買票呢?
結(jié)論:至少要有多少人進(jìn)公園時,買30張票才合算?
概括:1、不等式的定義:表示不等關(guān)系的式子,叫做不等式.不等式用符號,.
2、不等式的解:能使不等式成立的未知數(shù)的值,叫做不等式的解.
3、不等式的分類:⑴恒不等式:-7-5,3+41+4,a+2a+1.
、茥l件不等式:x+36,a+23,y-3-5.
三、基礎(chǔ)訓(xùn)練.
例1、用不等式表示: ⑴ a是正數(shù);⑵ b不 是負(fù)數(shù);⑶ c是非負(fù)數(shù); ⑷ x 的平方是非負(fù)數(shù);⑸ x的一半小于-1;⑹ y與4的和不小于3.
注:⑴不等式表示代數(shù)式之間的不相等關(guān)系,與方程表示相等關(guān)系相對應(yīng);
⑵研究不等關(guān)系列不等式的重點(diǎn)是抓關(guān)鍵詞,弄清不等關(guān)系.
例2、用不等式表示: ⑴ a與1的和是正數(shù);⑵ x的2倍與y的3倍的差是非負(fù)數(shù);⑶ x的2倍與1的和大于⑷a的一半與4的差的絕對值不小于a.
例3、當(dāng)x=2時,不等式x-12成立嗎?當(dāng)x=3呢?當(dāng)x=4呢?
注:⑴檢驗(yàn)字母的值能否使不等式成立,只要代入不等式的左右兩邊,如果符合不等號所表示的關(guān)系,就成立,否則就不成立. ⑵代入法是檢驗(yàn)不等式的解的重要方法.
學(xué)生練習(xí):課本P42練習(xí)1、2、3.
四、能力拓展
學(xué)校組織學(xué)生觀看電影,某電影院票價每張12元,50人以上(含50人)的團(tuán)體票可享受8折優(yōu)惠,現(xiàn)有45名學(xué)生一起到電影院看電影,為享受8折優(yōu)惠,必須按50人購團(tuán)體票.
、耪垎査麄冑徺I團(tuán)體票是否比不打折而按45人購票便宜;
、迫魧W(xué)生到該電影院人數(shù)不足50人,應(yīng)至少有多少人買團(tuán)體票比不打折而按實(shí)際人數(shù)購票便宜.
解:⑴按實(shí)際45人購票需付錢_________ 元,如果按50人購買團(tuán)體票則需付錢501280%=480元,所以購買團(tuán)體票便宜.
、圃O(shè)有x人到電影院觀看電影,當(dāng)x_____時,按實(shí)際人數(shù)買票______張,需付款_______元,而按團(tuán)體票購票需付款________元,如果買團(tuán)體票合算,那么應(yīng)有不等式________________,
由①得,當(dāng)x=45時,上式成立,讓我們再取一些數(shù)據(jù)試一試,將結(jié)果填入下表:
x 12x 比較480與12x的大小 4812x成立嗎?
30
40
41
42
由上表可見,至少要__________人時進(jìn)電影院,購團(tuán)體票才合算.
五、小結(jié):⑴不等式的定義,不等式的解.
、茖(shí)際問題中探索得到的不等式的解,不僅要滿足數(shù)學(xué)式子,而且要注意實(shí)際意義.
六、作業(yè): 課本P42習(xí)題8.1第1、2、3題.
補(bǔ)充題:
1.用不等式表示:
(1) 與1的和是正數(shù); (2) 的 與 的 的差是非負(fù)數(shù);
(3) 的2倍與1的和大于3; (4) 的一半與4的差的絕對值不小于 .
(5) 的2倍減去1不小于 與3的和; (6) 與 的平方和是非負(fù)數(shù);
(7) 的2倍加上3的和大于-2且小于4; (8) 減去5的差的絕對值不大于
2.小李和小張決定把省下的零用錢存起來.這個月小李存了168元,小張存了85元.下個月開始小李每月存16元,小張每月存25元.問幾個月后小張的存款數(shù)能超過小李?(試根據(jù)題意列出不等式,并參照教科書中問題1的探索,找出所列不等式的解)
3.某公司在甲、乙兩座倉庫分別有農(nóng)用車12輛和6輛,現(xiàn)需要調(diào)往A縣10輛,調(diào)往B縣8輛,已知從甲倉庫調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費(fèi)分別為40元和80元,從乙倉庫調(diào)運(yùn)一輛農(nóng)用車到A縣和B縣的運(yùn)費(fèi)分別為30元和50元,(1)設(shè)從乙倉庫調(diào)往A縣農(nóng)用車 輛,用含 的代數(shù)式表示總運(yùn)費(fèi)W元;(2)請你用嘗試的方法,探求總運(yùn)費(fèi)不超過900元,共有幾種調(diào)運(yùn)方案?你能否求出總運(yùn)費(fèi)最低的調(diào)運(yùn)方案.
不等式教案7
學(xué)習(xí)目標(biāo):
1、了解一元一次不等式組的概念,理解一元一次不等式組的解集的意義。
2、會解由兩個一元一次不等式組成的一元一次不等式組,能借助數(shù)軸正確的表示一元一次不等式組的解集。
3、通過探討一元一次不等式組的解法以及解集的確定,滲透轉(zhuǎn)化思想,進(jìn)一步感受數(shù)形結(jié)合在解決問題中的作用。
4、體驗(yàn)不等式在實(shí)際問題中的作用,感受數(shù)學(xué)的應(yīng)用價值。
學(xué)習(xí)重點(diǎn):
一元一次不等式組的解法
學(xué)習(xí)難點(diǎn):
一元一次不等式組解集的確定。
一、學(xué)前準(zhǔn)備
【回顧】
1.解不等式 ,并把解集在數(shù)軸上表示出來。
【預(yù)習(xí)】
1、 認(rèn)真閱讀教材34-35頁內(nèi)容
2、____________ _ 叫做一元一次不等式組。
______ _______叫做一元一次不等式組的解集。
叫做解不等式組。
4、求下列兩個不等式的解集,并在同一條數(shù)軸上表示出來
①
二、探究活動
【例題分析】
例1. (問題1)題中的買5筒錢不夠,買4筒錢又多的含義是什么?
例2. (問題2)題中的相等關(guān)系是什么?不等關(guān)系又是什么?
例3. 解不等式組
【小結(jié)】
不等式組解集口訣
同大取大,同小取小,大小小大中間找,大大小小解不了
一元一次不等式組解集四種類型如下表:
不等式組(a
(1)xb
xb 同大取大
(2)x
x
(3)xax
a
(4)xb
無解 大大小小解不了
【課堂檢測】
1、不等式組 的解集是( )
A. B. C. D.無解
2、不等式組 的.解集為( )
A.-1
3、不等式組 的解集在數(shù)軸上表示正確的是( )
A B C D
4、寫出下列不等式組的解集:(教材P35練習(xí)1)
三、自我測試
1.填空
(1)不等式組x-1 的解集是_ __;
(2)不等式組x-2 的解集 ;
(3)不等式組x1 的解集是__ __;
(4)不等式組x-4 解集是___ ___。
2、解下列不等式組,并在數(shù)軸上表示出來
(1)
四、應(yīng)用與拓展
若不等式組 無解,則m的取值范圍是 ____ _____.
不等式教案8
一、學(xué)生知識狀況分析
學(xué)生在初一時已經(jīng)學(xué)過數(shù)軸,對數(shù)軸有一定的了解,掌握了數(shù)軸的畫法,知道實(shí)數(shù)與數(shù)軸上的點(diǎn)成一一對應(yīng)關(guān)系,并且建立了一定的數(shù)形結(jié)合思想.以前學(xué)生所學(xué)的方程的解具有唯一性,而不等式的解的個數(shù)有無數(shù)個,這對學(xué)生來說是全新的開始;在前一課時,學(xué)習(xí)了不等式的基本性質(zhì),學(xué)生可利用性質(zhì)解一些簡單的不等式,為本節(jié)內(nèi)容打下了基礎(chǔ)。但對不等式解集的含義及表示方法還全然不知,因而在教學(xué)中要作更進(jìn)一步的探索和學(xué)習(xí).
二、教學(xué)任務(wù)分析
1、教材分析:
通過前面的學(xué)習(xí), 學(xué)生已初步體會到生活中量與量之間的關(guān)系,不僅有相等而且有大小之分,為了弄清這種大小關(guān)系,教材在此創(chuàng)設(shè)了豐富的實(shí)際問題情境,引出不等式的解的問題,進(jìn)一步探索出不等式的解集,同時還要求在數(shù)軸上把不等式的解集表示出來,從而滲透了“數(shù)----形”結(jié)合的思想,發(fā)展了學(xué)生符號表達(dá)的能力以及分析問題、解決問題的能力。教材中設(shè)置的“議一議”意在引導(dǎo)學(xué)生回憶實(shí)數(shù)與數(shù)軸上的點(diǎn)的對應(yīng)關(guān)系,認(rèn)識數(shù)軸上的點(diǎn)是有序的,實(shí)數(shù)是可以比較大小的,體現(xiàn)了新教材循序漸進(jìn),螺旋上升的特點(diǎn).
2、教學(xué)目標(biāo):
。1)知識與技能目標(biāo):
、倌軌蚋鶕(jù)具體情境中的大小關(guān)系了解不等式的意義
②能夠在數(shù)軸上表示不等式的解集
。2)過程與方法目標(biāo):
、倥囵B(yǎng)學(xué)生從現(xiàn)實(shí)情況中探索、發(fā)現(xiàn)并提出簡單的數(shù)學(xué)問題的能力。
、诮(jīng)歷求不等式的解集的過程,并試著把不等式的解集在數(shù)軸上表示出來,發(fā)展學(xué)生的創(chuàng)新意識。
。3)情感態(tài)度與價值觀目標(biāo):
從實(shí)際問題中抽象出數(shù)學(xué)模型,讓學(xué)生認(rèn)識數(shù)學(xué)與人類生活的密切聯(lián)系及對人類歷史的'作用,通過探索求不等式的解集的過程,體驗(yàn)數(shù)學(xué)活動充滿著探索與創(chuàng)造。
3、教學(xué)重點(diǎn):
。1)理解不等式中的相關(guān)概念
。2)探索不等式的解集并能在數(shù)軸上表示出來
4、教學(xué)難點(diǎn):
探索不等式的解集并能在數(shù)軸上表示出來
三、教學(xué)過程分析
本節(jié)課設(shè)計了七個環(huán)節(jié),第一環(huán)節(jié)——復(fù)習(xí)舊知識;第二環(huán)節(jié)——情境引入;第三環(huán)節(jié)——課堂探究;第四環(huán)節(jié)——例題講解;第五環(huán)節(jié)——隨堂練習(xí);第六環(huán)節(jié)——課堂小結(jié);第七環(huán)節(jié)——布置作業(yè)。
第一環(huán)節(jié):復(fù)習(xí)舊知識
活動內(nèi)容:師:上節(jié)課,對照等式的性質(zhì)類比地學(xué)習(xí)了不等式的基本性質(zhì),并且也探索出了它們的異同點(diǎn),下面我們來回顧一下不等式的基本性質(zhì)。(多媒體呈現(xiàn))
活動目的:讓學(xué)生回顧前一節(jié)內(nèi)容,也為本節(jié)課教學(xué)做準(zhǔn)備,起到承上啟下的作用。
活動效果:學(xué)生基本掌握不等式的基本性質(zhì)。
第二環(huán)節(jié):創(chuàng)設(shè)情境,導(dǎo)入新課
活動內(nèi)容:在某次數(shù)學(xué)競賽中,教師對優(yōu)秀學(xué)生給予獎勵,花了30元買了3個筆記本和若干支筆,已知筆記本每本4元,筆每支2元,問最多能買多少支筆?
活動目的:由一個實(shí)際生活情景引入,能引起學(xué)生學(xué)習(xí)的積極性,具有實(shí)際生活意義。
活動效果:學(xué)生1:3個筆記本共花去12元,還剩18元,可買9支筆.
學(xué)生2:我認(rèn)為可以買1,2,3…9支,最多9支.
此時學(xué)生討論激烈,具有較高的學(xué)習(xí)熱情,探索欲望極強(qiáng)。為以下不等式的解集作下鋪墊.
第三環(huán)節(jié):師生互動,課堂探究
活動內(nèi)容:通過學(xué)生們的相互交流,抽象到數(shù)學(xué)上:設(shè)至少可買X支筆,那么買筆記本的總價格與買筆的總價格的和不超過30元,因此: 3×4+2X≤30,利用不等式的基本性質(zhì)可解得X≤9.
(一)提出問題,引發(fā)討論探索交流:
1、若某人要完成一件工作,要求他完成這項(xiàng)任務(wù)的時間不得少于4小時,你知道他允許用的時間有多長嗎?(X≥4)
2、燃放某種禮花彈時,為了確保安全,人在點(diǎn)燃導(dǎo)火線后要在燃放前轉(zhuǎn)移到10米以外的安全區(qū)域,已知導(dǎo)火線的燃燒速度為0.02m/s,人離開的速度為4 m/s,那么導(dǎo)火線的長度應(yīng)為多少㎝?
分析:人轉(zhuǎn)移到安全區(qū)域需要的時間最少為 (S),導(dǎo)火線燃燒的時間為 秒,要使人轉(zhuǎn)移到安全地帶,必須有: >
解:設(shè)導(dǎo)火線的長度為x(㎝),則:
。
∴x>5
(二)想一想:
。1)x=5、6、8能使不等式成立嗎?
(2)你還能找出一些使不等式x>5成立的x的值嗎?
(三)導(dǎo)入知識,解釋疑難:
通過以上問題情境的引入可知:所列出的不等式中都含有未知數(shù),而符合條件的未知數(shù)的值很多,只要將其中任一個未知數(shù)的值代入原不等式中,均能使不等式成立,把“能使不等式成立的未知數(shù)的值,叫做不等式的解!辈坏仁降慕庥袝r有無數(shù)個,有時有有限個,有時無解。
一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集,求不等式的解集的過程叫做解不等式。
既然不等式的解集在通常情形下有很多個符合條件的解,那么我們能否用一種直觀的方法把不等式的解集表示出來呢?請同學(xué)們相互交流,發(fā)表自己的見解。
(四)議一議:
請同學(xué)們用自己的方式將不等式X>5的解集和不等式X-5≤-1的解集分別表示在數(shù)軸上,并與同伴進(jìn)行交流
學(xué)生1:
X>5 X≤4
學(xué)生2:
X>5 X≤4
教師:同學(xué)1他這樣表示無法區(qū)別有“等于”和沒有“等于”。同學(xué)2的方法讓人認(rèn)為解集是在兩個數(shù)之間,也容易引起誤解。那么我們怎么來解決呢?以上兩個解集應(yīng)表示為:
注意:將不等式的解集表示在數(shù)軸上時,要注意:
1)指示線的方向,“>”向右,“<”向左.
2)有“=”用實(shí)心點(diǎn),沒有“=”用空心圈.
活動目的:通過生活情境導(dǎo)入不等式的意義及解集的含義,從而引發(fā)表示不等式解集的必要性。學(xué)習(xí)在數(shù)軸上表示不等式解集時,先鼓勵學(xué)生用自己的方法表示,以發(fā)展他們的創(chuàng)新意識。
活動效果:本環(huán)節(jié)從生活實(shí)際情境引入,大力激發(fā)了學(xué)生的學(xué)習(xí)熱情,較簡單的問題串,讓學(xué)生獲得了成功的感受。最后在數(shù)軸上表示不等式的解集,充分體現(xiàn)了學(xué)生的創(chuàng)新能力。
第四環(huán)節(jié):例題講解
活動內(nèi)容:根據(jù)不等式的基本性質(zhì)求不等式的解集,并把解集表示在數(shù)軸上
(1)X-2≥-4 (2)2X≤8 -2X-2>-10
解:(1)X≥-2
(2)X≤4
。3)X<4
活動目的:給學(xué)生做個示范,給出格式及方法。
活動效果:學(xué)生基本都能輕松掌握
第五環(huán)節(jié):隨堂練習(xí)
活動內(nèi)容:
1、判斷正誤:
(1)不等式X-1﹥0有無數(shù)個解
。2)不等式2X-3≤0的解集為X≥
2、將下列不等式的解集分別表示在數(shù)軸上:
。1)X>4 (2)X≤-1 (3)X≥-3 (4)X≤5
3、填空1)方程2x=4的解有( )個,不等式2x<4的解有( )個2)不等式5x≥-10的解是( )
3)不等式x≥-3的負(fù)整數(shù)解是( )
4)不等式x-1<2的正整數(shù)解是( )
活動目的:對本課知識進(jìn)行鞏固練習(xí)。
活動效果:學(xué)生都能利用不等式的基本性質(zhì)解簡單的不等式,并能在數(shù)軸上表示不等式的解集。
第六環(huán)節(jié):課時小結(jié)
活動內(nèi)容:
1、理解不等式的解,不等式的解集,解不等式的概念
2、會根據(jù)不等式的基本性質(zhì)解不等式,并把解集表示在數(shù)軸上。
活動目的:鼓勵學(xué)生回顧本節(jié)課所學(xué)內(nèi)容,用自己的語言敘述什么是不等式的解、不等的解集、解不等式的概念以及怎樣把不等式的解集表示在數(shù)軸上;顒有Ч簩W(xué)生能用自己的語言較為準(zhǔn)確地描述不等式解、解集、解不等式的概念,對在數(shù)軸上表示不等式解集的方法及注意事項(xiàng)都能準(zhǔn)確表述。
第七環(huán)節(jié):作業(yè)
習(xí)題1、3
四、教學(xué)反思
1、要充分領(lǐng)會教材和使用教材:
教師在教學(xué)過程中應(yīng)充分領(lǐng)會教材,注重知識的銜接,在教學(xué)中充分體現(xiàn)數(shù)——形結(jié)合思想的滲透,同時也不時滲透集合的概念為高中學(xué)習(xí)作好銜接,設(shè)置問題情境讓他們有興趣參與探究、學(xué)習(xí),從而去思考。培養(yǎng)學(xué)生動手、動腦、合作的精神,教學(xué)中重點(diǎn)放在不等式解集的探索過程。
2、充分體現(xiàn)學(xué)生的合作交流、積極參與
通過教師的引入讓學(xué)生體會采用類比法思想自己推導(dǎo)出不等式的性質(zhì),進(jìn)一步通過問題情況的引入,積極參與交流探索,最后老師作進(jìn)一步誘導(dǎo),能及時發(fā)現(xiàn)學(xué)生在分析問題解決問題中的不同見解,以及思維的誤區(qū),及時進(jìn)行糾正、指導(dǎo)。把學(xué)生在課堂上學(xué)習(xí)的熱情激發(fā)出來,使得人人參與交流、探索,給每個學(xué)生展示自己的平臺。
3、需注意的方面:
在給予學(xué)生充分交流的同時,老師需積極參與,與學(xué)生一起創(chuàng)建建模的理念,并不時糾正不正確的思維。老師在小組活動中應(yīng)給予學(xué)生充分的啟發(fā)引導(dǎo),對合作交流中出現(xiàn)的問題要及時更正,對困難學(xué)生要給予幫助,使小組合作學(xué)習(xí)更具有實(shí)效性。
不等式教案9
一、教學(xué)目標(biāo):
。ㄒ唬┲R與能力目標(biāo):
1.體會解不等式的步驟,體會比較、轉(zhuǎn)化的作用,數(shù)學(xué)教案-一元一次不等式和它的解法。
2.學(xué)生理解、鞏固一元一次不等式的解法。
3.用數(shù)軸表示解集,加深對數(shù)形結(jié)合思想的進(jìn)一步理解和掌握。
4.在解決實(shí)際問題中能夠體會將文字語言轉(zhuǎn)化成數(shù)學(xué)語言,學(xué)會用數(shù)學(xué)語言表示實(shí)際的數(shù)量關(guān)系。
。ǘ┻^程與方法目標(biāo):
1.介紹一元一次不等式的概念。
2.通過對一元一次方程的解法的復(fù)習(xí)和對不等式性質(zhì)的利用,導(dǎo)入對解不等式的討論。
3.學(xué)生體會通過綜合利用不等式的概念和基本性質(zhì)解不等式的方法。
4.學(xué)生將文字表達(dá)轉(zhuǎn)化為數(shù)學(xué)語言,從而解決實(shí)際問題。
5.練習(xí)鞏固,將本節(jié)和上節(jié)內(nèi)容聯(lián)系起來。
。ㄈ┣楦小B(tài)度與價值目標(biāo):
1.在教學(xué)過程中,學(xué)生體會數(shù)學(xué)中的比較和轉(zhuǎn)化思想。
2.通過類比一元一次方程的解法,從而更好的掌握一元一次不等式的解法,樹立辯證統(tǒng)一思想。
3.通過學(xué)生的討論,學(xué)生進(jìn)一步體會集體的作用,培養(yǎng)其集體合作的精神。
4.通過本節(jié)的學(xué)習(xí),學(xué)生體會不等式解集的奇異的數(shù)學(xué)美。
二、教學(xué)重、難點(diǎn):
1.掌握一元一次不等式的解法。
2.掌握解一元一次不等式的階梯步驟,并能準(zhǔn)確求出解集。
3.能將文字?jǐn)⑹鲛D(zhuǎn)化為數(shù)學(xué)語言,從而完成對應(yīng)用問題的解決。
三、教學(xué)突破:
教材中沒有給出解法的一般步驟,所以在教學(xué)中要注意讓學(xué)生經(jīng)歷將所給的不等式轉(zhuǎn)化為簡單不等式的過程,并通過學(xué)生的討論交流使學(xué)生經(jīng)歷知識的形成和鞏固過程。在解不等式的過程中,與上節(jié)課聯(lián)系起來,重視將解集表示在數(shù)軸上,從而指導(dǎo)學(xué)生體會用數(shù)形結(jié)合的方法解決問題。在研究中,鼓勵學(xué)生用多種方法求解,從而鍛煉他們活躍的思維。
四、教 具:計算機(jī)輔助教學(xué).
五、教學(xué)流程:
(一)、復(fù)習(xí):
1. 給出方程:(x+4)/3=(3x-1)/2,抽學(xué)生演算。(注意步驟)
2.學(xué)生回憶不等式的性質(zhì),并說出解不等式的關(guān)鍵在哪里。
3. 讓學(xué)生舉一些不等式的例子。在學(xué)生歸納出一元一次不等式的概念后,據(jù)情況點(diǎn)評。
4. 新課導(dǎo)入:通過上節(jié)課的學(xué)習(xí),我們已經(jīng)掌握了解簡單不等式的方法。這節(jié)課我們來共同探討解一元一次不等式的方法。
1.學(xué)生練習(xí),并說出解一元一次方程的步驟。
2.認(rèn)真思考,用自己的語言描述不等式的性質(zhì),說出解不等式的關(guān)鍵在于將不等式化為x≤a或x≥a的形式。
3.舉出不等式的例子,從中找出一元一次不等式的例子,歸納出一元一次不等式的概念。
4.明確本課目標(biāo),進(jìn)入對新課的學(xué)習(xí)。
1. 復(fù)習(xí)解一元一次方程的解法和步驟。
2.讓學(xué)生回顧性質(zhì),以加強(qiáng)對性質(zhì)的理解、掌握。
3.運(yùn)用類比思維
4.自然過度
。ǘ、新授:
1、 學(xué)生觀察課本第61頁例3 ,教師說明:解不等式就是利用不等式的三條基本性質(zhì)對不等式進(jìn)行變形的過程,初中數(shù)學(xué)教案《數(shù)學(xué)教案-一元一次不等式和它的解法》。提醒學(xué)生注意步驟。
2. 分析學(xué)生的解答,提醒學(xué)生在解不等式中常見的錯誤:不等式兩邊同乘(除)同一個負(fù)數(shù)不等號方向要改變。
3. 激勵學(xué)生完成對(2) 解答,并找學(xué)生上講臺演示。
4.強(qiáng)調(diào)在數(shù)軸上表示解集時的關(guān)鍵
5.出示練習(xí)。
6.鼓勵學(xué)生討論課本第61頁的例4 。提示學(xué)生:首先將簡單的文字表達(dá)轉(zhuǎn)化成數(shù)學(xué)語言。
7.指導(dǎo)學(xué)生歸納步驟。
8.補(bǔ)充適當(dāng)?shù)木毩?xí),以鞏固學(xué)生所學(xué)。
9 . 類比解一元一次方程,仔細(xì)觀察,理解用不等式的'性質(zhì)(3)解不等式的原理,并掌握用數(shù)軸表示不等式的解的方法。
10.學(xué)生類比解一元一次方程的步驟,與解一元一次不等式的一般步驟,同時完成練習(xí)。
11.完成例3(2):2(5x+3)≤x-3(1-2x)的解答。教師提示,組內(nèi)討論后,檢查自己的解答過程,彌補(bǔ)不足,進(jìn)一步體會解一元一次不等式的方法。
12.理解、體會在數(shù)軸上表示解集的方法和關(guān)鍵。
13.學(xué)生組內(nèi)討論完成。
14.認(rèn)真完成對例題的解答,在教師的提示下找到不等量關(guān)系,列出不等式:(x+4)/3-(3x-1)/2>1,并求解。.
15.組內(nèi)討論并歸納后,看教師所出示的課件。
16.認(rèn)真完成練習(xí)。
17.電腦逐步演示,讓學(xué)生從演示過程中理解不等式的解法。
18.鞏固對一般解法的理解、掌握。
19.通過類比歸納,提高學(xué)生的自學(xué)能力。
20.讓學(xué)生明白不等式的解集是一個范圍,而方程的解是一個值。
21.培養(yǎng)學(xué)生的擴(kuò)展能力。
22.類比一元一次方程的解法以加深對一元一次不等式解法的理解。
23.通過動手、動腦使所學(xué)知識得到鞏固。
24.鞏固所學(xué)。
。ㄈ、小結(jié)與鞏固:
1.引導(dǎo)學(xué)生對本課知識進(jìn)行歸納。
2.學(xué)生完成后。
3.練習(xí)與鞏固。
1.學(xué)生組內(nèi)討論小結(jié),組長幫助組員對知識鞏固、提升。
2.學(xué)生加強(qiáng)理解。
3.完成練習(xí):書63頁第4題,第5(2、4)題。
1.培養(yǎng)學(xué)生總結(jié)、歸納的能力。
2.點(diǎn)撥學(xué)生對知識的理解與掌握。
3.鞏固本課所學(xué)。
不等式教案10
[教學(xué)目標(biāo)]
1.了解不等式概念,理解不等式的解集,能正確表示不等式的解集
2.培養(yǎng)學(xué)生的數(shù)感,滲透數(shù)形結(jié)合的思想.
[教學(xué)重點(diǎn)與難點(diǎn)]
重點(diǎn):不等式的解集的表示.
難點(diǎn):不等式解集的確定.
[教學(xué)設(shè)計]
[設(shè)計說明]一.問題探知
某班同學(xué)去植樹,原計劃每位同學(xué)植樹4棵,但由于某組的10名同學(xué)另有任務(wù),未能參加植樹,其余同學(xué)每位植請
樹6棵,結(jié)果仍未能完成計劃任務(wù),若以該班同學(xué)的人數(shù)為x,此時的x應(yīng)滿足怎樣的關(guān)系式?
依題意得4x6(x—10)
1.不等式:用“”或“”號表示大小關(guān)系的式子,叫不等式.
解析:(1)用≠表示不等關(guān)系的式子也叫不等式
。2)不等式中含有未知數(shù),也可以不含有未知數(shù);
。3)注意不大于和不小于的說法
例1用不等式表示
(1)a與1的和是正數(shù);
。2)y的2倍與1的和大于3;
。3)x的一半與x的2倍的和是非正數(shù);
。4)c與4的和的30%不大于—2;
。5)x除以2的商加上2,至多為5;
。6)a與b兩數(shù)的和的平方不可能大于3.
二.不等式的解
不等式的解:能使不等式成立的未知數(shù)的值,叫不等式的解.
解析:不等式的解可能不止一個.
例2下列各數(shù)中,哪些是不等是x+13的解?哪些不是?
—3,—1,0,1,1.5,2.5,3,3.5
解:略.
練習(xí):1.判斷數(shù):—3,—2,—1,0,1,2,3,是不是不等式2x+35的解?再找出另外的小于0的解兩個.
2.下列各數(shù):—5,—4,—3,—2,—1,0,1,2,3,4,5中,同時適合x+57和2x+20的有哪幾個數(shù)?
三.不等式的解集
1.不等式的`解集:一個含有未知數(shù)的不等式的所有解組成這個不等式的解集.
含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.
分析不等關(guān)系,滲透不等式的列法
學(xué)生列出不等式,教師注意糾正錯誤
明確驗(yàn)證解的方法,引入不等式的解集概念
解析:解集是個范圍
例3下列說法中正確的是()
A.x=3是不是不等式2x1的解
B.x=3是不是不等式2x1的唯一解;
C.x=3不是不等式2x1的解;
D.x=3是不等式2x1的解集
2.不等式解集的表示方法
例4在數(shù)軸上表示下列不等式的解集
(1)x—1;(2)x≥—1;(3)x—1;(4)x≤—1
分析:按畫數(shù)軸,定界點(diǎn),走方向的步驟答
解:
注意:1.實(shí)心點(diǎn)表示包括這個點(diǎn),空心點(diǎn)表示不包括這個點(diǎn)
2.大于向右走,小于向左走.
練習(xí):如圖,表示的是不等式的解集,其中錯誤的是()
練習(xí):
1.在數(shù)軸上表示下列不等式的解集
。1)x3(2)x2(3)y≥—1(4)y≤0(5)x≠4
2.教材128:1,2,3
第3題:要求試著在數(shù)軸上表示
[小結(jié)]
1.不等式的解和解集;
2.不等式解集的表示方法.
[作業(yè)]
必做題:教科書134頁習(xí)題:2題
指導(dǎo)辨析
總結(jié)規(guī)律和方法
延伸閱讀
9.1.1不等式及其解集
9.1.1不等式及其解集
教學(xué)目標(biāo)1、感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡單的實(shí)際問題,使學(xué)生自發(fā)地
尋找不等式的解,會把不等式的解集正確地表示到數(shù)軸上;
2、經(jīng)歷由具體實(shí)例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;
3、通過對不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識;讓學(xué)生充分體會到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個領(lǐng)域。
教學(xué)難點(diǎn)正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
知識重點(diǎn)建立方程解決實(shí)際問題,會解“ax+b=cx+d”類型的一元一次方程
教學(xué)過程(師生活動)設(shè)計理念
提出問題多媒體演示:
1、兩個體重相同的孩子正在蹺蹺板上做游戲.現(xiàn)在換了一個小胖子上去,蹺蹺板發(fā)生了傾斜,游戲無法繼續(xù)進(jìn)行下去了.這是什么原因呢?
2、一輛勻速行駛的汽車在11:20時距離A地50千米。要在12:00以前駛過A地,車速應(yīng)該具備什么條件?若設(shè)車速為每小時x千米,能用一個式子表示嗎?通過實(shí)例創(chuàng)設(shè)情境,從“等”過渡到“不等”,培養(yǎng)學(xué)生的觀察能力,激發(fā)他們的學(xué)習(xí)興趣.
探究新知(一)不等式、一元一次不等式的概念
1、在學(xué)生充分發(fā)表自己意見的基礎(chǔ)上,2、師生共同3、歸納得出:用“<”或“>”表示大小關(guān)系的式子叫做不4、等式;用“并”表示不5、等關(guān)系的式子也是不6、等式。
2、下列式子中哪些是不等式?
。1)a+b=b+a(2)-3>-5(3)x≠l
。4)x十36(5)2mn(6)2x—3
上述不等式中,有些不含未知數(shù),有些含有未知數(shù).我們把那些類似于一元一次方程,含有一個未知數(shù)且未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式.
3、小組交流:說說生活中的不等關(guān)系.
分組活動.先獨(dú)立思考,然后小組內(nèi)互相交流并做記錄,最后各組選派代表發(fā)言,在此基礎(chǔ)上引出不等號“≥”和“≤”.補(bǔ)充說明:用“≥”和“≤”表示不等關(guān)系的式子也是不等式.
(二)不等式的解、不等式的解集
問題1.要使汽車在12:00以前駛過A地,你認(rèn)為車速應(yīng)該為多少呢?
問題2.車速可以是每小時85千米嗎?每小時82千米呢?每小時75.1千米呢?每小時74千米呢?
問題3.我們曾經(jīng)學(xué)過“使方程兩邊相等的未知數(shù)的值就是方程的解”,我們也可以把使不等式成立的未知數(shù)的值叫做不等式的解.剛才同學(xué)們所說的這些數(shù),哪些是不等式50的解?
問題4,數(shù)中哪些是不等式50的解:
76,73,79,80,74.9,75.1,90,60
你能找出這個不等式其他的解嗎?它到底有多少個解?你從中發(fā)現(xiàn)了什么規(guī)律?
討論后得出:當(dāng)x75時,不等式50成立;當(dāng)x75或x=75時,不等式50不成立。這就是說,任何一個大于75的數(shù)都是不等式50的解,這樣的解有無數(shù)個。因此,x75表示了能使不等式50成立的“x”的取值范圍。我們把它叫做不等式50的解的集合,簡稱解集.這個解集還可以用數(shù)軸來表示(教師示范表示方法).回到前面的問題,要使汽車在12:00以前駛過A地,車速必須大于每小時75千米。
一般地,一個含有未知數(shù)的不等式的所有的解,組成這個不等式的解集.求不等式的解集的過程叫做解不等式.
引導(dǎo)學(xué)生仔細(xì)觀察并歸納出不等式的意義。
在甄別不等式的過程中,加深對不等式意義的理解,引出一元一次不等式的概念.
培養(yǎng)學(xué)生主動參與、合作交流的意識,同時體會到在現(xiàn)實(shí)生活中,不等關(guān)系要比相等關(guān)系多得多.“補(bǔ)充說明”是為了讓學(xué)生能完整地理解不等式的定義.
讓學(xué)生充分發(fā)表意見,并通過計算、動手驗(yàn)證、動腦思考,初步體會不等式解的意義以及不等式解與方程解的不同之處.
遵循學(xué)生的認(rèn)知規(guī)律,有意識、有計劃、有條理地設(shè)計一些引人入勝的問題,可讓學(xué)生始終處在積極的思維狀態(tài),不知不覺中接受了新知識,分散了難點(diǎn).
鞏固新知1、下列哪些是不2、等式x+36的解?哪些不3、是?
。4,-2.5,0,1,2.5,3,3.2,4.8,8,12
2、直接想出不等式的解集,并在數(shù)軸上表示出來:
。1)x+36(2)2x8(3)x-20
拓廣探索
比較分析對于問題1還有不同的未知數(shù)的設(shè)法嗎?
學(xué)生思考回答:若設(shè)去年購買計算機(jī)x臺,得方程
若設(shè)今年購買計算機(jī)x臺,得方程
鞏固對不等式解的概念的理解。鞏固對不等式解集概念的理解,并會在數(shù)軸上表示不等式的解集。
解決問題某開山工程正在進(jìn)行爆破作業(yè).已知導(dǎo)火索燃燒的速度是每秒0.8厘米,人跑開的速度是每秒4米.為了使放炮的工人在爆炸時能跑到100米以外的安全地帶,導(dǎo)火索的長度應(yīng)超過多少厘米?進(jìn)一步鞏固所學(xué)知識,感受新知識的用途。
總結(jié)歸納1、不等式與一元一次不等式的概念;
2、不等式的解與不等式的解集;
3、不等式的解集在數(shù)軸上的表示.通過總結(jié)歸納,完善學(xué)生已有的知識結(jié)構(gòu)。
小結(jié)與作業(yè)
布置作業(yè)1、必做題:教科書第134頁習(xí)題9.1第1、2題
2、選做題:教科書第134頁習(xí)題9.1第3題.
3、備選題:
。1)用不等式表示下列數(shù)量關(guān)系:
①a比1大;
②x與一3的差是正數(shù);
、踴的4倍與5的和是負(fù)數(shù)
。2)在-4,-2,-1,0,1,3中,找出使不等式成立的x值:
。1)x+53,(2)3x5
。3)在數(shù)軸上表示下列不等式的解集:
、賦2②x>-3
(4)不等式x5有多少個解?有多少個正整數(shù)解?
本課教育評注(課堂設(shè)計理念,實(shí)際教學(xué)效果及改進(jìn)設(shè)想)
本課設(shè)置了豐富的實(shí)際情境,比如蹺蹺板游戲、爆破問題等,研究這些問題,可以使學(xué)生體會到現(xiàn)實(shí)生活中存在著大量的不等關(guān)系,不等式是現(xiàn)實(shí)世界中不等關(guān)系的一種數(shù)學(xué)表示形式,它也是刻畫現(xiàn)實(shí)世界中量與量之間關(guān)系的有效模型.
教學(xué)中要突出知識之間的內(nèi)在聯(lián)系.不等式與方程一樣,都是反映客觀事物變化規(guī)律及其關(guān)系的模型.在教學(xué)中,類比已經(jīng)學(xué)過的方程知識,引導(dǎo)學(xué)生自己去探索、發(fā)現(xiàn)、甄別,從而得出一元一次不等式、不等式的解與解集的意義.
教學(xué)過程也是學(xué)生的認(rèn)知過程,只有學(xué)生積極地參與教學(xué)活動才能收到良好的效果.因此,本課采用啟發(fā)誘導(dǎo)、實(shí)例探究、講練結(jié)合的教學(xué)方法,揭示知識的發(fā)生和形成過程.這種教學(xué)方法以“生動探索”為基礎(chǔ),先“引導(dǎo)發(fā)現(xiàn)”,后“講評點(diǎn)撥”,讓學(xué)生在克服困難與障礙的過程中充分發(fā)揮自己的觀察力、想象力和思維力,再加上多媒體的運(yùn)用,使學(xué)生真正成為學(xué)習(xí)的主體。
不等式及其解集導(dǎo)學(xué)案
不等式教案11
教學(xué)目的:
1.掌握常用基本不等式,并能用之證明不等式和求最值;
2.掌握含絕對值的不等式的性質(zhì);
3.會解簡單的高次不等式、分式不等式、含絕對值的不等式、簡單的無理不等式、指數(shù)不等式和對數(shù)不等式.學(xué)會運(yùn)用數(shù)形結(jié)合、分類討論、等價轉(zhuǎn)換的思想方法分析和解決有關(guān)
教學(xué)過程:
一、復(fù)習(xí)引入:本章知識點(diǎn)
二、講解范例:幾類常見的問題
(一) 含參數(shù)的不等式的解法
例1解關(guān)于x的不等式 .
例2解關(guān)于x的不等式 .
例3解關(guān)于x的不等式 .
例4解關(guān)于x的不等式
例5 滿足 的x的集合為A;滿足 的x
的集合為B 1 若AB 求a的取值范圍 2 若AB 求a的取值范圍 3 若AB為僅含一個元素的集合,求a的值.
(二)函數(shù)的.最值與值域
例6 求函數(shù) 的最大值,下列解法是否正確?為什么?
解一: ,
解二: 當(dāng) 即 時,
例7 若 ,求 的最值。
例8 已知x , y為正實(shí)數(shù),且 成等差數(shù)列, 成等比數(shù)列,求 的取值范圍.
例9 設(shè) 且 ,求 的最大值
例10 函數(shù) 的最大值為9,最小值為1,求a,b的值。
三、作業(yè):
1.
2. , 若 ,求a的取值范圍
3.
4.
5.當(dāng)a在什么范圍內(nèi)方程: 有兩個不同的負(fù)根
6.若方程 的兩根都對于2,求實(shí)數(shù)m的范圍
7.求下列函數(shù)的最值:
1
2
8.1 時求 的最小值, 的最小值
2設(shè) ,求 的最大值
3若 , 求 的最大值
4若 且 ,求 的最小值
9.若 ,求證: 的最小值為3
10.制作一個容積為 的圓柱形容器(有底有蓋),問圓柱底半徑和
高各取多少時,用料最省?(不計加工時的損耗及接縫用料)
不等式教案12
一、創(chuàng)設(shè)情景,導(dǎo)入新課
1、很多人在自己的童年生活中,都做過蹺蹺板的游戲,當(dāng)一個大人和一個小孩同時坐上等臂長的蹺蹺板的兩邊時會發(fā)生什么現(xiàn)象呢?這是什么原因呢?
2、一輛勻速行駛的汽車在11:20時距離A地50千米,要在12:00到達(dá)A地,車速應(yīng)該具備什么條件?如果要在12:00之前駛過A車速又應(yīng)該滿足什么條件?
問題一:汽車能在12:00準(zhǔn)時到達(dá)A地
問題二:汽車能在12:00之前到達(dá)A地
。ㄒ鈭D:從實(shí)際問題引入不等式,同時從等式自然的過度到不等式)
二、探究新知
(一)不等式的概念
上面的兩組式子有什么不同點(diǎn).
在學(xué)生對比的基礎(chǔ),師生共同歸納得出,用不等符號連接表示不等關(guān)系的式子叫不等式
練習(xí)1:下列式子是否是不等式?
(1)-2<5(2)x+3>2x(3)4x-2y<0(4)a-2b
。5)x2-2x+1<0(6)a+b≠c(7)5m+3=8(8)x≤-4
練習(xí)2:用不等式表示:
。1)a與1的和是正數(shù);
(2)a是非負(fù)數(shù);
(3)a與b的和不小于7;
。4)a與2的差大于-1;
。5)a的4倍不大于8;
。6)a的一半小于3.
(二)不等式的解、不等式的解集
x+37中x=5滿足不等式嗎?
我們把x=5帶入不等式發(fā)現(xiàn),左邊=8右邊=77成立,所以5是不等式x+37的.解,不等式x+37還有其它的解嗎?
什么是不等式的解?
學(xué)生總結(jié):
1、不等式的解就是能使不等式成立的未知數(shù)的值;
2、不等式的解不止一個;
師生歸納:
一般的,一個含有未知數(shù)的不等式的所有的解組成這個不等式的解集.求不等式的解集的過程叫解不等式
練習(xí)
3.下列說法正確的是()
A.x=3是2x1的解B.x=3是2x1的唯一解
C.x=3不是2x1的解D.x=3是2x1的解集
4.下列數(shù)值哪些是不等式x+36的解?你能確定它的解集
不等式教案13
教學(xué)目標(biāo)
1.知識與技能
理解一次函數(shù)與一元一次不等式的關(guān)系,發(fā)展學(xué)生的認(rèn)知體系.
2.過程與方法
經(jīng)歷探索一次函數(shù)與一元一次不等式的關(guān)系的過程,掌握其應(yīng)用方法.
3.情感、態(tài)度與價值觀
培養(yǎng)良好的數(shù)學(xué)抽象思維,體會本節(jié)課知識在現(xiàn)實(shí)生活中的應(yīng)用價值.
重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):一次函數(shù)與一元一次不等式的關(guān)系.
2.難點(diǎn):如何應(yīng)用一次函數(shù)性質(zhì)解決一元一次不等式的解集問題.
3.關(guān)鍵:從一次函數(shù)的圖象出發(fā),直觀地呈現(xiàn)出一元一次不等式的解的范圍.
教具準(zhǔn)備
采用“問題解決”的教學(xué)方法.
教學(xué)過程
一、回顧交流,知識遷移
問題提出:請思考下面兩個問題:
。1)解不等式5x+6>3x+10;
(2)當(dāng)自變量x為何值時,函數(shù)y=2x-4的值大于0?
學(xué)生活動觀察屏幕,通過思考,得到(1)、(2)的答案,回答問題.
教師活動在學(xué)生充分探討的基礎(chǔ)上,引導(dǎo)學(xué)生思考:“一元一次不等式與一次函數(shù)之間有何內(nèi)在聯(lián)系?”
思路點(diǎn)撥在問題(1)中,不等式5x+6>3x+10可以轉(zhuǎn)化為2x-4>0,解這個不等式得x>2;問題(2)就是解不等式2x-4>0,得出x>2時函數(shù)y=2x-4的值大于0,因此這兩個問題實(shí)際上是同一個問題,從直線y=2x-4(如圖)可以看出.當(dāng)x>2時,這條直線上的點(diǎn)在x軸的上方,即這時y=2x-4>0.
問題探索
教師敘述:由上面兩個問題的關(guān)系,能進(jìn)一步得到“解不等式ax+b>0”與“求自變量x在什么范圍內(nèi),一次函數(shù)y=ax+b的值大于0”有什么關(guān)系?
學(xué)生活動小組討論,觀察上述問題的圖象,聯(lián)系不等式、函數(shù)知識,解決問題.
師生共識由于任何一元一次不等式都可以轉(zhuǎn)化為ax+b>0或ax+b<0(a,b為常數(shù),a≠0)的形式,所以解一元一次不等式可以看出:當(dāng)一次函數(shù)值大(。┯0時,求自變量相應(yīng)的取值范圍.
教學(xué)形式師生互動交流,生生互動.
二、范例點(diǎn)擊,領(lǐng)悟新知
例2用畫函數(shù)圖象的方法解不等式5x+4<2x+10.
教師活動激發(fā)思考.
學(xué)生活動小組合作討論,運(yùn)用兩種思維方法解決例2問題.
解法1:原不等式化為3x-6<0,畫出直線y=3x-6(左圖),可以看出,當(dāng)x<2時,這條直線上的點(diǎn)在x軸的下方,即這時y=3x-6<0,所以不等式的解集為x<2.
解法2:將原不等式的兩邊分別看作兩個一次函數(shù),畫出直線y=5x+4與直線y=2x+10(右圖),可以看出,它們交點(diǎn)的橫坐標(biāo)為2,當(dāng)x<2時,對于同一個x,直線y=5x+4上的點(diǎn)在直線y=2x+10上相應(yīng)點(diǎn)的`下方,這時5x+4<2x+10,所以不等式的解集為x<2.
評析兩種解法都把解不等式轉(zhuǎn)化為比較直線上點(diǎn)的位置的高低.
三、隨堂練習(xí),鞏固深化
課本P216練習(xí).
四、課堂,發(fā)展?jié)撃?/p>
用一次函數(shù)圖象來解一元一次方程或一元一次不等式未必簡單,但是從函數(shù)角度看問題,能發(fā)現(xiàn)一次函數(shù)、一元一次方程與一元一次不等式之間的關(guān)系,能直觀地看到怎樣用圖形來表示方程的解與不等式的解,這種用函數(shù)觀點(diǎn)認(rèn)識問題的方法,對于繼續(xù)學(xué)習(xí)數(shù)學(xué)是重要的.
五、布置作業(yè),專題突破
課本P129習(xí)題14.3第3,4,7,8,10題.
不等式教案14
9.1.1不等式及其解集
一、學(xué)習(xí)目標(biāo):
1、感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡單的實(shí)際問題,使學(xué)生自發(fā)地尋找不等式的解,會把不等式的解集正確地表示到數(shù)軸上;
3、通過對不等式、不等式解與解集的探究,引導(dǎo)學(xué)生在獨(dú)立思考的基礎(chǔ)上積極參與對數(shù)學(xué)問題的討論,培養(yǎng)他們的合作交流意識;讓學(xué)生充分體會到生活中處處有數(shù)學(xué),并能將它們應(yīng)用到生活的各個領(lǐng)域。
二、學(xué)習(xí)重點(diǎn)、難點(diǎn):
1、重點(diǎn):理解不等式的解與解集,并把不等式的解集正確地表示到數(shù)軸上。
2、難點(diǎn):正確理解不等式、不等式解與解集的意義,把不等式的`解集正確地表示到數(shù)軸上。
三、學(xué)習(xí)過程:
問題情境:1、兩個體重相同的孩子正在蹺蹺板上做游戲.現(xiàn)在換了一個小胖子上去,蹺蹺板發(fā)生了傾斜,游戲無法繼續(xù)進(jìn)行下去了.這是什么原因呢?
2、一輛勻速行駛的汽車在11:20時距離A地50千米。要在12:00以前駛過A地,車速應(yīng)該具備什么條件?若設(shè)車速為每小時x千米,能用一個式子表示嗎?
探究新知:
。ㄒ唬┎坏仁、一元一次不等式的概念
1、用“<”、“≠”、“>”、“≥”或“≤”表示大小關(guān)系的式子叫做不等式;用“并”表示不等關(guān)系的式子也是不等式。
2、下列式子中哪些是不等式?(1)a+b=b+a(2)-3>-5(3)x≠l
。4)x十3>6(5)2m< n(6)2x-3(7)a≥2(8)x≤y-1
。ǘ┎坏仁降慕、不等式的解集
問題1.要使汽車在12:00以前駛過A地,你認(rèn)為車速應(yīng)該為多少呢?
問題2.車速可以是每小時85千米嗎?每小時82千米呢?每小時75.1千米呢?每小時74千米呢?
問題3.我們曾經(jīng)學(xué)過“使方程兩邊相等的未知數(shù)的值就是方程的解”,我們也可以把使不等式成立的未知數(shù)的值叫做不等式的解.剛才同學(xué)們所說的這些數(shù),哪些是不等式x> 50的解?
問題4,數(shù)中哪些是不等式x> 50的解:76,73,79,50,80,74. 9,75.1,90,40,60 。你能找出這個不等式其他的解嗎?它到底有多少個解?你從中發(fā)現(xiàn)了什么規(guī)律?
一般地,一個含有未知數(shù)的不等式的所有的解,組成這個不等式的解集.求不等式的解集的過程叫做解不等式.
。ㄈ┎坏仁降慕饧跀(shù)軸上的表示
例:在數(shù)軸上表示下列不等式的解集
(1)x>-1; (2)x≥-1; (3)x<-1; (4)x≤-1
鞏固新知:練習(xí)P123頁1、2、3
總結(jié)歸納:1、不等式與一元一次不等式的概念;2、不等式的解與不等式的解集;
3、不等式的解集在數(shù)軸上的表示.
作業(yè):1、P128,2
2、下列各數(shù):-5,-4,-3,-2,-1,0,1,2,3,4,5中,同時適合x+5<7和2x+2>0的有哪幾個數(shù)?
3、下列說法中正確的是( )
A.x=3是不是不等式2x>1的解B.x=3是不是不等式2x>1的唯一解;
C.x=3不是不等式2x>1的解; D.x=3是不等式2x>1的解集
4、如圖,表示的是不等式的解集,其中錯誤的是( )
5、在數(shù)軸上表示下列不等式的解集
(1)x>3,(2)x<2 , (3)y≥-1,(4)y≤0,(5)x≠4,(6)1≤x≤4,(7)-2<x≤3,(8)-2≤x<3。
不等式教案15
中班數(shù)學(xué):等于和不等于。
我們常說,機(jī)會是留給有準(zhǔn)備的人。幼兒園的老師都想教學(xué)工作能使小朋友們學(xué)到知識,優(yōu)秀的教案能幫老師們更好的解決學(xué)習(xí)上的問題,有了教案上課才能夠?yàn)橥瑢W(xué)講更多的,更全面的知識。那么一篇好的幼兒園教案要怎么才能寫好呢?以下是小編為大家收集的“中班數(shù)學(xué):等于和不等于”相信能對大家有所幫助。
活動目標(biāo):
1、認(rèn)識=、≠,了解其實(shí)際含義,能用=、≠表示兩個集合的數(shù)量關(guān)系,初步建立等量觀念。
2、復(fù)習(xí)數(shù)字1—5,了解它們可以表示的實(shí)物數(shù)量。
3、培養(yǎng)思維的`敏捷性,體驗(yàn)游戲的愉快,樂意幫助有困難的人。
活動準(zhǔn)備:
1、數(shù)字卡片1—5
2、符號=、≠
3、昆蟲卡片若干,數(shù)量為1—5
4、青蛙頭飾、卡片,數(shù)量為1—5
活動過程:
一、復(fù)習(xí)數(shù)字1—5,初步認(rèn)識=。
(一)點(diǎn)數(shù)實(shí)物1—5,并找出可以用來表示這些實(shí)物數(shù)量的數(shù)字。
1、今天天氣真好,小青蛙到池塘邊來玩了。
出示數(shù)量為1—5的青蛙圖片。
數(shù)數(shù)每一群有幾只青蛙。
2、請你幫它們找個數(shù)字朋友吧。
請個別幼兒分別找出相應(yīng)的數(shù)字放在小青蛙的后面。
3、幼兒說說1只青蛙可以用數(shù)字1來表示,2只青蛙……
。ǘ┱J(rèn)識=
1、出示符號“=”,認(rèn)識等號。
這是等號,它長什么樣?
2、把它放在數(shù)字1和1只青蛙的中間,可以用來表示它們兩邊是一樣多的。
讀一讀1等于1只青蛙。
3、請幾個小朋友為其他數(shù)字和青蛙找到相應(yīng)的符號放在中間,并讀一讀。
4、老師小結(jié):相同數(shù)量的東西我們可以用“=”來表示。
二、認(rèn)識≠
1、青蛙奶奶生病了,不能出來捕食,我們捉些小蟲子給它吃吧。醫(yī)生給它開了個食物的處方。出示數(shù)字5與≠。
這是什么符號?和剛才的=長得一樣嗎?
2、這是不等號,它可以用來表示兩邊的數(shù)量不一樣多。
那么我們該給青蛙奶奶捉幾只蟲子呢?為什么?(幼兒討論)
3、請幼兒從小筐中找蟲子圖片,并說說為什么?(因?yàn)樗?不一樣多)
還有哪些數(shù)量的蟲子也和5不一樣多?幼兒可以從小筐中把和5不一樣的蟲子圖片都找出來。
4、老師把1—4或更多的蟲子的圖片放在數(shù)字5后面,原來它們都不一樣多,都可以用不等號來表示。
大家讀一讀。
三、鞏固對=、≠的認(rèn)識
1、游戲:小青蛙捉害蟲
根據(jù)老師出示的數(shù)字和符號到草叢(桌子上)找蟲子,看誰找得對,找得快。
比如:2=,1≠。
2、每操作一次,進(jìn)行老師檢查或幼兒相互檢查,發(fā)現(xiàn)問題及時指出。
3、反復(fù)游戲數(shù)次。(在不等號的操作中,幼兒找一個或多個圖片均可)。把找到的蟲子卡片放入小筐中。
4、我們帶上食物一起去送給青蛙奶奶吧。
【不等式教案】相關(guān)文章:
不等式的證明教案11-21
數(shù)學(xué)不等式的解集教案12-29
高中不等式的教案(通用11篇)12-29
一元二次不等式教案11-19
一元一次不等式教案02-23
不等式教學(xué)反思12-01
不等式的教學(xué)反思11-24
不等式的性質(zhì)教學(xué)反思06-08
不等式組教學(xué)反思01-07