国产精品入口免费视频_亚洲精品美女久久久久99_波多野结衣国产一区二区三区_农村妇女色又黄一级真人片卡

二次根式教案

時間:2022-02-22 11:14:01 教案 我要投稿

二次根式教案(精選5篇)

  作為一位兢兢業(yè)業(yè)的人民教師,就不得不需要編寫教案,教案是實施教學的主要依據,有著至關重要的作用。教案應該怎么寫才好呢?下面是小編收集整理的二次根式教案3篇,僅供參考,大家一起來看看吧。

二次根式教案(精選5篇)

  二次根式教案 篇1

  一、教學目標

  1.理解分母有理化與除法的關系.

  2.掌握二次根式的分母有理化.

  3.通過二次根式的分母有理化,培養(yǎng)學生的運算能力.

  4.通過學習分母有理化與除法的關系,向學生滲透轉化的數學思想

  二、教學設計

  小結、歸納、提高

  三、重點、難點解決辦法

  1.教學重點:分母有理化.

  2.教學難點:分母有理化的技巧.

  四、課時安排

  1課時

  五、教具學具準備

  投影儀、膠片、多媒體

  六、師生互動活動設計

  復習小結,歸納整理,應用提高,以學生活動為主

  七、教學過程

  【復習提問】

  二次根式混合運算的步驟、運算順序、互為有理化因式.

  例1 說出下列算式的運算步驟和順序:

  (1) (先乘除,后加減).

 。2) (有括號,先去括號;不宜先進行括號內的運算).

  (3)辨別有理化因式:

  有理化因式: 與 , 與 , 與 …

  不是有理化因式: 與 , 與 …

  化簡一個式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依據分式的基本性質).

  例如:等式子的化簡,如果分母是兩個二次根式的和,應該怎樣化簡?

  引入新課題.

  【引入新課】

  化簡式子 ,乘以什么樣的.式子,分母中的根式符號可去掉,結論是分子與分母要同乘以 的有理化因式,而這個式子就是 ,從而可將式子化簡.

  例2 把下列各式的分母有理化:

  (1) ; (2) ; (3)

  解:略.

  注:通過例題的講解,使學生理解和掌握化簡的步驟、關鍵問題、化簡的依據.式子的化簡,若分子與分母可分解因式,則可先分解因式,再約分,使化簡變得簡單.

  二次根式教案 篇2

  教學目的

  1.使學生掌握最簡二次根式的定義,并會應用此定義判斷一個根式是否為最簡二次根式;

  2.會運用積和商的算術平方根的性質,把一個二次根式化為最簡二次根式。

  教學重點

  最簡二次根式的定義。

  教學難點

  一個二次根式化成最簡二次根式的方法。

  教學過程

  一、復習引入

  1.把下列各根式化簡,并說出化簡的根據:

  2.引導學生觀察考慮:

  化簡前后的根式,被開方數有什么不同?

  化簡前的被開方數有分數,分式;化簡后的被開方數都是整數或整式,且被開方數中開得盡方的因數或因式,被移到根號外。

  3.啟發(fā)學生回答:

  二次根式,請同學們考慮一下被開方數符合什么條件的二次根式叫做最簡二次根式?

  二、講解新課

  1.總結學生回答的內容后,給出最簡二次根式定義:

  滿足下列兩個條件的二次根式叫做最簡二次根式:

  (1)被開方數的因數是整數,因式是整式;

  (2)被開方數中不含能開得盡的因數或因式。

  最簡二次根式定義中第(1)條說明被開方數不含有分母;分母是1的例外。第(2)條說明被開方數中每個因式的'指數小于2;特別注意被開方數應化為因式連乘積的形式。

  2.練習:

  下列各根式是否為最簡二次根式,不是最簡二次根式的說明原因:

  3.例題:

  例1 把下列各式化成最簡二次根式:

  例2 把下列各式化成最簡二次根式:

  4.總結

  把二次根式化成最簡二次根式的根據是什么?應用了什么方法?

  當被開方數為整數或整式時,把被開方數進行因數或因式分解,根據積的算術平方根的性質,把開得盡方的因數或因式用它的算術平方根代替移到根號外面去。

  當被開方數是分數或分式時,根據分式的基本性質和商的算術平方根的性質化去分母。

  此方法是先根據分式的基本性質把被開方數的分母化成能開得盡方的因式,然后分子、分母再分別化簡。

  三、鞏固練習

  1.把下列各式化成最簡二次根式:

  2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。

  四、小結

  本節(jié)課學習了最簡二次根式的定義及化簡二次根式的方法。同學們掌握用最簡二次根式的定義判斷一個根式是否為最簡二次根式,要根據積的算術平方根和商的算術平方根的性質把一個根式化成最簡二次根式,特別注意當被開方數為多項式時要進行因式分解,被開方數為兩個分數的和則要先通分,再化簡。

  五、布置作業(yè)

  下列各式化成最簡二次根式:

  二次根式教案 篇3

  課題:二次根式

  教學目標 1、知識與技能

  理解a(a≥0)是一個非負數, (a≥0)

  2、過程與方法

 。1)數學思考:學會獨立思考、體會數學的體驗歸納、類比的思想

  方法

 。2) 問題解決:能夠利用性質進行二次根式的化簡計算,能夠互助

  交流合作,分析問題,總結反思

  3、情感、態(tài)度與價值觀

  體驗成功的樂趣,鍛煉克服困難的意志,培養(yǎng)嚴謹

  求實的科學態(tài)度

  教學重難點 教學重點:二次根式的概念

  教學難點:二次根式中根號下必須為非負數

  教學過程

  一、課前回顧

 。2分鐘)

  學生與老師共同回顧上節(jié)課所學內容,溫故而知新。 什么是二次根式?

  二次根式中字母的取值范圍:

 、俦婚_方數大于等于零;

 、诜帜钢杏凶帜笗r,要保證分母不為零。

 、鄱鄠條件組合時,應用不等式組求解

  一、情境引入(3分鐘)

  由生活中的實例引入投影的概念,引起學生的學習興趣

  已知下列各正方形的面積,求其邊長。

  二、探究1(10分鐘)

  練習1:

  計算下列各式:

  三、探究2(10分鐘)

  可以發(fā)現(xiàn)它們有如下規(guī)律:

  一般的',二次根式有下列性質:

  練習2:

  典型例題 例1:計算:

  例2:計算:

  達標測試(5分鐘)

  課堂測試,檢驗學習結果

  1、判斷題

  2、若 ,則x的取值范圍為 ( A )

 。ˋ) x≤1 (B) x≥1

 。–) 0≤x≤1 (D)一切有理數

  3、計算

  4、化簡

  5、已知a,b,c為△ABC的三邊長,化簡:

  這一類問題注意把二次根式的運算搭載在三角形三邊之間的關系這個知識點上,特別要應用好。

  應用提高(5分鐘)

  能力提升,學有余力的同學可以仔細研究 如圖,P是直角坐標系中一點。

 。1)用二次根式表示點P到原點O的距離;

 。2)如果 求點P到原點O的距離

  體驗收獲 今天我們學習了哪些知識

  二次根式的兩條性質。

  布置作業(yè) 教材8頁習題第3、4題。

  二次根式教案 篇4

  教案

  教法:

  1、引導發(fā)現(xiàn)法:通過教師精心設計的問題鏈,使學生產生認知沖突,感悟新知,建立分式的模型,引導學生觀察、類比、參與問題討論,使感性認識上升為理性認識,充分體現(xiàn)了教師主導和學生主體的作用,對實現(xiàn)教學目標起了重要的作用;

  2、講練結合法:在例題教學中,引導學生閱讀,與平方根進行類比,獲得解決問題的方法后配以精講,并進行分層練習,培養(yǎng)學生的閱讀習慣和規(guī)范的解題格式。

  學法:

  1、類比的方法通過觀察、類比,使學生感悟二次根式的模型,形成有效的學習策略。

  2、閱讀的`方法讓學生閱讀教材及材料,體驗一定的閱讀方法,提高閱讀能力。

  3、分組討論法將自己的意見在小組內交換,達到取長補短,體驗學習活動中的交流與合作。

  4、練習法采用不同的練習法,鞏固所學的知識;利用教材進行自檢,小組內進行他檢,提高學生的素質。

  知識點

  上節(jié)課我們認識了什么是二次根式,那么二次根式有什么性質呢?本節(jié)課我們一起來學習。

  二、展示目標,自主學習:

  自學指導:認真閱讀課本第3頁——4頁內容,完成下列任務:

  1、請比較與0的大小,你得到的結論是:________________________。

  2、完成3頁“探究”中的填空,你得到的結論是____________________。

  3、看例2是怎樣利用性質進行計算的。

  4、完成4頁“探究”中的填空,你得到的結論是:____________________。

  5 、看懂例3,有困難可與同伴交流或問老師。

  課時作業(yè)

  教師節(jié)要到了,為了表示對老師的敬意,小明做了兩張大小不同的正方形壁畫準備送給老師,其中一張面積為800 cm2,另一張面積為450 cm2,他想如果再用金彩帶把壁畫的邊鑲上會更漂亮,他現(xiàn)在有1.2 m長的金彩帶,請你幫助算一算,他的金彩帶夠用嗎?如果不夠,還需買多長的金彩帶?(≈1.414,結果保留整數)

  二次根式教案 篇5

  教學目標

  1.使學生進一步理解二次根式的意義及基本性質,并能熟練 地化簡含二次根式的式子;

  2.熟練地進行二次根式的加、減、乘、除混合運算.

  教學重點和難點

  重點:含二次根式的式子的混合運算.

  難點:綜合運用二次根式的 性質及運算法則化簡和計算含二次根式的式子.

  教學過程設計

  一、復習

  1.請同學回憶二次根式有哪些基本性質?用式子表示出來,并說明各 式成立的條件.

  指出:二次根式的這些基本性質都是在一定條件 下才成立的,主要應用于化簡二次根式.

  2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

  指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

  計算結果要把分母有理化.

  3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關系式:

  4.在含有二次根式的式子的化簡及求值等問題中,常運用三個可逆的式子:

  二、例題

  例1 x取什么值時,下列各式在實數范圍內有意義:

  分析:

  (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

  (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

  (4)題的分子是二次根式,分母是含x的單項式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

  x-2且x0.

  解因為n2-90, 9-n20,且n-30,所以n2=9且n3,所以

  例3

  分析:第一個二次根式的被開方數的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質把式子化簡,化簡中應注意利用題中的隱含條件3 -a0和1-a>0.

  解 因為1-a>0,3-a0,所以

  a<1,|a-2|=2-a.

  (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

  這些性質化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

  問:上面的代數式中的兩個二次根式的被開方數的式子如何化為完全平方式?

  分析:先把第二個式子化簡,再把兩個式子進行通分,然后進行計算.

  注意:

  所以在化簡過程中,

  例6

  分析:如果把兩個式子通分,或把每一個式子的分母有理化再進行計算,這兩種方法的運算量都較大,根據式子的結構特點,分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運算變?yōu)楹喗荩?/p>

  a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

  三、課堂練習

  1.選擇題:

  A.a2B.a2

  C.a2D.a<2

  A .x+2 B.-x-2

  C.-x+2D.x-2

  A.2x B.2a

  C.-2x D.-2a

  2.填空題:

  4.計算:

  四、小結

  1.本節(jié)課復習的`五個基本問題是“二次根式”這一章的主要基礎知識,同學們要深刻理解并牢固掌握.

  2.在一次根式的化簡、計算及求值的過程中,應注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數為非負數,以確定被開方數中的字母或式子的取值范圍.

  3.運用二次根式的四個基本性質進行二次根式的運算時,一定要注意論述每一個性質中字母的取值范圍的條件.

  4.通過例題的討論,要學會綜合、靈活運用二次根式的意義、基本性質和法則以及有關多項式的因式分解,解答有關含二次根式的式子的化簡、計算及求值等問題.

  五、作業(yè)

  1.x是什么值時,下列各式在實數范圍內有意義?

  2.把下列各式化成最簡二次根式:

【二次根式教案】相關文章:

二次根式教案11-10

《二次根式的運算》的教案09-07

二次根式的加減教案01-19

二次根式數學教案09-22

二次根式教案(精選11篇)04-13

精選二次根式教案3篇08-04

二次根式教案(15篇)02-27

二次根式教案15篇02-16

二次根式教案范文5篇11-02