高中數(shù)學教案15篇
在教學工作者開展教學活動前,常常要根據(jù)教學需要編寫教案,借助教案可以有效提升自己的教學能力。那么問題來了,教案應該怎么寫?下面是小編收集整理的高中數(shù)學教案,希望對大家有所幫助。
高中數(shù)學教案1
第一章:空間幾何體
1.1.1柱、錐、臺、球的結(jié)構特征
一、教學目標
1.知識與技能
。1)通過實物操作,增強學生的直觀感知。
。2)能根據(jù)幾何結(jié)構特征對空間物體進行分類。
。3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構特征。
。4)會表示有關于幾何體以及柱、錐、臺的分類。
2.過程與方法
。1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
3.情感態(tài)度與價值觀
。1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
。2)培養(yǎng)學生的空間想象能力和抽象括能力。
二、教學重點、難點
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構特征。
難點:柱、錐、臺、球的結(jié)構特征的概括。
三、教學用具
。1)學法:觀察、思考、交流、討論、概括。
。2)實物模型、投影儀
四、教學思路
。ㄒ唬﹦(chuàng)設情景,揭示課題
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構特征的空間物體),你能通過觀察。根據(jù)某種標準對這些空間物體進行分類嗎?這是我們所要學習的內(nèi)容。
。ǘ、研探新知
1.引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
2.觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點是什么?它們的共同特點是什么?
3.組織學生分組討論,每小組選出一名同學發(fā)表本組討論結(jié)果。在此基礎上得出棱柱的主要結(jié)構特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學生結(jié)合圖形共同得出棱柱相關概念以及棱柱的表示。
5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?請列舉身邊具有已學過的幾何結(jié)構特征的物體,并說出組成這些物體的幾何結(jié)構特征?它們由哪些基本幾何體組成的?
6.以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結(jié)構特征,并得出相關的概念,分類以及表示。
7.讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。
8.引導學生以類似的`方法思考圓錐、圓臺、球的結(jié)構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
10.現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構特征的物體組合而成。請列舉身邊具有已學過的幾何結(jié)構特征的物體,并說出組成這些物體的幾何結(jié)構特征?它們由哪些基本幾何體組成的?
。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本P8,習題1.1A組第1題。
4.圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
5.棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
四、鞏固深化
練習:課本P7練習1、2(1)(2)
課本P8習題1.1第2、3、4題
五、歸納整理
由學生整理學習了哪些內(nèi)容
六、布置作業(yè)
課本P8練習題1.1B組第1題
課外練習課本P8習題1.1B組第2題
1.2.1空間幾何體的三視圖(1課時)
一、教學目標
1.知識與技能
。1)掌握畫三視圖的基本技能
。2)豐富學生的空間想象力
2.過程與方法
主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀
。1)提高學生空間想象力
(2)體會三視圖的作用
二、教學重點、難點
重點:畫出簡單組合體的三視圖
難點:識別三視圖所表示的空間幾何體
三、學法與教學用具
1.學法:觀察、動手實踐、討論、類比
2.教學用具:實物模型、三角板
四、教學思路
。ㄒ唬﹦(chuàng)設情景,揭開課題
“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。
在初中,我們已經(jīng)學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側(cè)視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?
。ǘ⿲嵺`動手作圖
1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結(jié)果并討論;
2.教師引導學生用類比方法畫出簡單組合體的三視圖
。1)畫出球放在長方體上的三視圖
。2)畫出礦泉水瓶(實物放在桌面上)的三視圖
學生畫完后,可把自己的作品展示并與同學交流,總結(jié)自己的作圖心得。
作三視圖之前應當細心觀察,認識了它的基本結(jié)構特征后,再動手作圖。
3.三視圖與幾何體之間的相互轉(zhuǎn)化。
(1)投影出示圖片(課本P10,圖1.2-3)
請同學們思考圖中的三視圖表示的幾何體是什么?
。2)你能畫出圓臺的三視圖嗎?
。3)三視圖對于認識空間幾何體有何作用?你有何體會?
教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發(fā)表對上述問題的看法。
4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。
。ㄈ╈柟叹毩
課本P12練習1、2P18習題1.2A組1
。ㄋ模w納整理
請學生回顧發(fā)表如何作好空間幾何體的三視圖
(五)課外練習
1.自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。
1.2.2空間幾何體的直觀圖(1課時)
一、教學目標
1.知識與技能
。1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。
。2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
2.過程與方法
學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3.情感態(tài)度與價值觀
。1)提高空間想象力與直觀感受。
。2)體會對比在學習中的作用。
。3)感受幾何作圖在生產(chǎn)活動中的應用。
二、教學重點、難點
重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
三、學法與教學用具
1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學用具:三角板、圓規(guī)
四、教學思路
(一)創(chuàng)設情景,揭示課題
1.我們都學過畫畫,這節(jié)課我們畫一物體:圓柱
把實物圓柱放在講臺上讓學生畫。
2.學生畫完后展示自己的結(jié)果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內(nèi)容。
。ǘ┭刑叫轮
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。
畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結(jié)這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結(jié)為確定點的位置的畫法。強調(diào)斜二測畫法的步驟。
練習反饋
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖
教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。
教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。
3.探求空間幾何體的直觀圖的畫法
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。
教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。
4.平行投影與中心投影
投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習,課本P16練習1(1),2,3,4
三、歸納整理
學生回顧斜二測畫法的關鍵與步驟
四、作業(yè)
1.書畫作業(yè),課本P17練習第5題
2.課外思考課本P16,探究(1)(2)
高中數(shù)學教案2
教學目標:
(1)理解子集、真子集、補集、兩個集合相等概念;
(2)了解全集、空集的意義。
(3)掌握有關子集、全集、補集的符號及表示方法,會用它們正確表示一些簡單的集合,培養(yǎng)學生的符號表示的能力;
(4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;
(5)能判斷兩集合間的包含、相等關系,并會用符號及圖形(文氏圖)準確地表示出來,培養(yǎng)學生的數(shù)學結(jié)合的數(shù)學思想;
(6)培養(yǎng)學生用集合的觀點分析問題、解決問題的能力。
教學重點:
子集、補集的概念
教學難點:
弄清元素與子集、屬于與包含之間的區(qū)別
教學用具:
幻燈機
教學過程設計
(一)導入新課
上節(jié)課我們學習了集合、元素、集合中元素的三性、元素與集合的關系等知識。
【提出問題】(投影打出)
已知xx,xx,xx,問:
1、哪些集合表示方法是列舉法。
2、哪些集合表示方法是描述法。
3、將集M、集從集P用圖示法表示。
4、分別說出各集合中的元素。
5、將每個集合中的元素與該集合的關系用符號表示出來、將集N中元素3與集M的關系用符號表示出來。
6、集M中元素與集N有何關系、集M中元素與集P有何關系。
【找學生回答】
1、集合M和集合N;(口答)
2、集合P;(口答)
3、(筆練結(jié)合板演)
4、集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1、(口答)
5、xx,xx,xx,xx,xx,xx,xx,xx(筆練結(jié)合板演)
6、集M中任何元素都是集N的元素、集M中任何元素都是集P的元素、(口答)
【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關系,而具有這種關系的兩個集合在今后學習中會經(jīng)常出現(xiàn),本節(jié)將研究有關兩個集合間關系的問題、
(二)新授知識
1、子集
(1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。
記作:xx讀作:A包含于B或B包含A
當集合A不包含于集合B,或集合B不包含集合A時,則記作:AxxB或BxxA、
性質(zhì):①xx(任何一個集合是它本身的子集)
、趚x(空集是任何集合的子集)
【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?
【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合。
因為B的子集也包括它本身,而這個子集是由B的全體元素組成的空集也是B的子集,而這個集合中并不含有B中的元素、由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的。
(2)集合相等:一般地,對于兩個集合A與B,如果集合A的.任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。
例:xx,可見,集合xx,是指A、B的所有元素完全相同。
(3)真子集:對于兩個集合A與B,如果xx,并且xx,我們就說集合A是集合B的真子集,記作:xx(或xx),讀作A真包含于B或B真包含A。
【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集。”
集合B同它的真子集A之間的關系,可用文氏圖表示,其中兩個圓的內(nèi)部分別表示集合A,B。
【提問】
(1)xx寫出數(shù)集N,Z,Q,R的包含關系,并用文氏圖表示。
(2)xx判斷下列寫法是否正確
、賦xAxx②xxAxx③xx④AxxA
性質(zhì):
(1)空集是任何非空集合的真子集。若xxAxx,且A≠xx,則xxA;
(2)如果xx,xx,則xx。
例1xx寫出集合xx的所有子集,并指出其中哪些是它的真子集、
解:集合xx的所有的子集是xx,xx,xx,xx,其中xx,xx,xx是xx的真子集。
【注意】(1)子集與真子集符號的方向。
(2)易混符號
、佟皒x”與“xx”:元素與集合之間是屬于關系;集合與集合之間是包含關系。如xxR,{1}xx{1,2,3}
②{0}與xx:{0}是含有一個元素0的集合,xx是不含任何元素的集合。
如:xx{0}。不能寫成xx={0},xx∈{0}
例2xx見教材P8(解略)
例3xx判斷下列說法是否正確,如果不正確,請加以改正、
(1)xx表示空集;
(2)空集是任何集合的真子集;
(3)xx不是xx;
(4)xx的所有子集是xx;
(5)如果xx且xx,那么B必是A的真子集;
(6)xx與xx不能同時成立、
解:(1)xx不表示空集,它表示以空集為元素的集合,所以(1)不正確;
(2)不正確、空集是任何非空集合的真子集;
(3)不正確、xx與xx表示同一集合;
(4)不正確、xx的所有子集是xx;
(5)正確
(6)不正確、當xx時,xx與xx能同時成立、
例4xx用適當?shù)姆?xx,xx)填空:
(1)xx;xx;xx;
(2)xx;xx;
(3)xx;
(4)設xx,xx,xx,則AxxBxxC、
解:(1)0xx0xx;
(2)xx=xx,xx;
(3)xx,xx∴xx;
(4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C、
【練習】教材P9
用適當?shù)姆?xx,xx)填空:
(1)xx;xx(5)xx;
(2)xx;xx(6)xx;
(3)xx;xx(7)xx;
(4)xx;xx(8)xx、
解:(1)xx;(2)xx;(3)xx;(4)xx;(5)=;(6)xx;(7)xx;(8)xx、
提問:見教材P9例子
(二)xx全集與補集
1、補集:一般地,設S是一個集合,A是S的一個子集(即xx),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作xx,即
、
A在S中的補集xx可用右圖中陰影部分表示、
性質(zhì):xxS(xxSA)=A
如:(1)若S={1,2,3,4,5,6},A={1,3,5},則xxSA={2,4,6};
(2)若A={0},則xxNA=N;
(3)xxRQ是無理數(shù)集。
2、全集:
如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用xx表示。
注:xx是對于給定的全集xx而言的,當全集不同時,補集也會不同。
例如:若xx,當xx時,xx;當xx時,則xx。
例5xx設全集xx,xx,xx,判斷xx與xx之間的關系。
解:
練習:見教材P10練習
1、填空:
xx,xx,那么xx,xx。
解:xx,
2、填空:
(1)如果全集xx,那么N的補集xx;
(2)如果全集,xx,那么xx的補集xx(xx)=xx、
解:(1)xx;(2)xx。
(三)小結(jié):本節(jié)課學習了以下內(nèi)容:
1、五個概念(子集、集合相等、真子集、補集、全集,其中子集、補集為重點)
2、五條性質(zhì)
(1)空集是任何集合的子集。ΦxxA
(2)空集是任何非空集合的真子集。ΦxxAxx(A≠Φ)
(3)任何一個集合是它本身的子集。
(4)如果xx,xx,則xx、
(5)xxS(xxSA)=A
3、兩組易混符號:(1)“xx”與“xx”:(2){0}與
(四)課后作業(yè):見教材P10習題1、2
高中數(shù)學教案3
一、教學目標:
掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關性質(zhì)解決諸如平面幾何、解析幾何等的問題。
二、教學重點:
向量的性質(zhì)及相關知識的綜合應用。
三、教學過程:
。ㄒ唬┲饕R:
1、掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關性質(zhì)解決諸如平面幾何、解析幾何等的'問題。
。ǘ├}分析:略
四、小結(jié):
1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,
2、滲透數(shù)學建模的思想,切實培養(yǎng)分析和解決問題的能力。
五、作業(yè):
略
高中數(shù)學教案4
教材分析:
三角函數(shù)的誘導公式是普通高中課程標準實驗教科書(人教B版)數(shù)學必修四,第一章第二節(jié)內(nèi)容,其主要內(nèi)容是公式(一)至公式(四)。本節(jié)課是第二課時,教學內(nèi)容是公式(三)。教材要求通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法。
教案背景:
通過學生在已經(jīng)掌握的任意角的三角函數(shù)定義和公式(一)(二)的基礎上,發(fā)現(xiàn)他們與單位圓的交點坐標之間關系,進而發(fā)現(xiàn)三角函數(shù)值的關系。同時教材滲透了轉(zhuǎn)化與化歸等數(shù)學思想方法,為培養(yǎng)學生養(yǎng)成良好的學習習慣提出了要求。因此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
教學方法:
以學生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學思想方法,采用提出問題、啟發(fā)引導、共同探究、綜合應用等教學模式。
教學目標:
借助單位圓探究誘導公式。
能正確運用誘導公式將任意角的三角函數(shù)化為銳角三角函數(shù)。
教學重點:
誘導公式(三)的推導及應用。
教學難點:
誘導公式的應用。
教學手段:
多媒體。
教學情景設計:
一.復習回顧:
1. 誘導公式(一)(二)。
2. 角 (終邊在一條直線上)
3. 思考:下列一組角有什么特征?( )能否用式子來表示?
二.新課:
已知 由
可知
而 (課件演示,學生發(fā)現(xiàn))
所以
于是可得: (三)
設計意圖:結(jié)合幾何畫板的演示利用同一點的坐標變換,導出公式。
由公式(一)(三)可以看出,角 角 相等。即:
.
公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數(shù)式的值或化簡三角函數(shù)式。
設計意圖:結(jié)合學過的公式(一)(二),發(fā)現(xiàn)特點,總結(jié)公式。
1. 練習
(1)
設計意圖:利用公式解決問題,發(fā)現(xiàn)新問題,小組研究討論,得到新公式。
(學生板演,老師點評,用彩色粉筆強調(diào)重點,引導學生總結(jié)公式。)
三.例題
例3:求下列各三角函數(shù)值:
(1)
(2)
(3)
(4)
例4:化簡
設計意圖:利用公式解決問題。
練習:
(1)
(2) (學生板演,師生點評)
設計意圖:觀察公式特點,選擇公式解決問題。
四.課堂小結(jié):將任意角三角函數(shù)轉(zhuǎn)化為銳角三角函數(shù),體現(xiàn)轉(zhuǎn)化化歸,數(shù)形結(jié)合思想的應用,培養(yǎng)了學生分析問題、解決問題的能力,熟練應用解決問題。
五.課后作業(yè):課后練習A、B組
六.課后反思與交流
很榮幸大家來聽我的課,通過這課,我學習到如下的東西:
1.要認真的研讀新課標,對教學的目標,重難點把握要到位
2.注意板書設計,注重細節(jié)的東西,語速需要改正
3.進一步的學習網(wǎng)頁制作,讓你的網(wǎng)頁更加的完善,學生更容易操作
4.盡可能讓你的學生自主提出問題,自主的.思考,能夠化被動學習為主動學習,充分享受學習數(shù)學的樂趣
5.上課的生動化,形象化需要加強
聽課者評價:
1.評議者:網(wǎng)絡輔助教學,起到了很好的效果;教態(tài)大方,作為新教師,開設校際課,勇氣可嘉!建議:感覺到老師有點緊張,其實可以放開點的,相信效果會更好的!重點不夠清晰,有引導數(shù)學時,最好值有個側(cè)重點;網(wǎng)絡設計上,網(wǎng)頁上公開的推導公式為上,留有更大的空間讓學生來思考。
2.評議者:網(wǎng)絡教學效果良好,給學生自主思考,學習的空間發(fā)揮,教學設計得好;建議:課堂講課聲音,語調(diào)可以更有節(jié)奏感一些,抑揚頓挫應注意課堂例題練習可以多兩題。
3.評議者:學科網(wǎng)絡平臺的使用;建議:應重視引導學生將一些唾手可得的有用結(jié)論總結(jié)出來,并形成自我的經(jīng)驗。
4.評議者:引導學生通過網(wǎng)絡進行探究。
建議:課件制作在線測評部分,建議不能重復選擇,應全部做完后,顯示結(jié)果,再重復測試;多提問學生。
( 1)給學生思考的時間較長,語調(diào)相對平緩,總結(jié)時,給學生一些激勵的語言更好
( 2)這樣子的教學可以提高上課效率,讓學生更多的時間思考
( 3)網(wǎng)絡平臺的使用,使得學生的參與度明顯提高,存在問題:1.公式對稱性的誘導,點與點的對稱的誘導,終邊的關系的誘導,要進一步的修正;2.公式的概括要注意引導學生怎么用,學習這個誘導公式的作用
( 4)給學生答案,這個網(wǎng)頁要進一步的修正,答案能否不要一點就出來
( 5)1.板書設計要進一步的加強,2.語速相對是比較快的3.練習量比較少
( 6)讓學生多探究,課堂會更熱鬧
( 7)注意引入的過程要帶有目的,帶著問題來教學,學生帶著問題來學習
( 8)教學模式相對簡單重復
( 9)思路較為清晰,規(guī)范化的推理
高中數(shù)學教案5
教學目標
(1)了解算法的含義,體會算法思想。
(2)會用自然語言和數(shù)學語言描述簡單具體問題的算法;
(3)學習有條理地、清晰地表達解決問題的步驟,培養(yǎng)邏輯思維能力與表達能力。
教學重難點
重點:算法的含義、解二元一次方程組的算法設計。
難點:把自然語言轉(zhuǎn)化為算法語言。
情境導入
電影《神槍手》中描述的凌靖是一個天生的狙擊手,他百發(fā)百中,最難打的位置對他來說也是輕而易舉,是香港警察狙擊手隊伍的第一神槍手、作為一名狙擊手,要想成功地完成一次狙擊任務,一般要按步驟完成以下幾步:
第一步:觀察、等待目標出現(xiàn)(用望遠鏡或瞄準鏡);
第二步:瞄準目標;
第三步:計算(或估測)風速、距離、空氣濕度、空氣密度;
第四步:根據(jù)第三步的結(jié)果修正彈著點;
第五步:開槍;
第六步:迅速轉(zhuǎn)移(或隱蔽)
以上這種完成狙擊任務的方法、步驟在數(shù)學上我們叫算法。
課堂探究
預習提升
1、定義:算法可以理解為由基本運算及規(guī)定的運算順序所構成的完整的解題步驟,或者看成按照要求設計好的有限的確切的計算序列,并且這樣的步驟或序列能夠解決一類問題。
2、描述方式
自然語言、數(shù)學語言、形式語言(算法語言)、框圖。
3、算法的要求
(1)寫出的算法,必須能解決一類問題,且能重復使用;
(2)算法過程要能一步一步執(zhí)行,每一步執(zhí)行的操作,必須確切,不能含混不清,而且經(jīng)過有限步后能得出結(jié)果。
4、算法的特征
(1)有限性:一個算法應包括有限的操作步驟,能在執(zhí)行有窮的操作步驟之后結(jié)束。
(2)確定性:算法的計算規(guī)則及相應的'計算步驟必須是唯一確定的。
(3)可行性:算法中的每一個步驟都是可以在有限的時間內(nèi)完成的基本操作,并能得到確定的結(jié)果。
(4)順序性:算法從初始步驟開始,分為若干個明確的步驟,前一步是后一步的前提,后一步是前一步的后續(xù),且除了最后一步外,每一個步驟只有一個確定的后續(xù)。
(5)不唯一性:解決同一問題的算法可以是不唯一的
課堂典例講練
命題方向1對算法意義的理解
例1、下列敘述中,
①植樹需要運苗、挖坑、栽苗、澆水這些步驟;
、诎错樞蜻M行下列運算:1+1=2,2+1=3,3+1=4,…99+1=100;
、蹚那鄭u乘動車到濟南,再從濟南乘飛機到倫敦觀看奧運會開幕式;
、3x>x+1;
⑤求所有能被3整除的正數(shù),即3,6,9,12。
能稱為算法的個數(shù)為( )
A、2
B、3
C、4
D、5
【解析】根據(jù)算法的含義和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一個明確的步驟,不符合明確性;⑤的步驟是無窮的,與算法的有限性矛盾。
【答案】B
[規(guī)律總結(jié)]
1、正確理解算法的概念及其特點是解決問題的關鍵、
2、針對判斷語句是否是算法的問題,要看它的步驟是否是明確的和有效的,而且能在有限步驟之內(nèi)解決這一問題、
【變式訓練】下列對算法的理解不正確的是________
、僖粋算法應包含有限的步驟,而不能是無限的
、谒惴ǹ梢岳斫鉃橛苫具\算及規(guī)定的運算順序構成的完整的解題步驟
、鬯惴ㄖ械拿恳徊蕉紤斢行У貓(zhí)行,并得到確定的結(jié)果
、芤粋問題只能設計出一個算法
【解析】由算法的有限性指包含的步驟是有限的故①正確;
由算法的明確性是指每一步都是確定的故②正確;
由算法的每一步都是確定的,且每一步都應有確定的結(jié)果故③正確;
由對于同一個問題可以有不同的算法故④不正確。
【答案】④
命題方向2解方程(組)的算法
例2、給出求解方程組的一個算法。
[思路分析]解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計算機上實現(xiàn),我們用高斯消元法(即先將方程組化為一個三角形方程組,再通過回代方程求出方程組的解)解線性方程組、
[規(guī)范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11
即方程組可化為
第二步,解方程③,可得y=-1,④
第三步,將④代入①,可得2x-1=7,x=4
第四步,輸出4,-1
方法二:算法如下:
第一步,由①式可以得到y(tǒng)=7-2x,⑤
第二步,把y=7-2x代入②,得x=4
第三步,把x=4代入⑤,得y=-1
第四步,輸出4,-1
[規(guī)律總結(jié)]1、本題用了2種方法求解,對于問題的求解過程,我們既要強調(diào)對“通法、通解”的理解,又要強調(diào)對所學知識的靈活運用。
2、設計算法時,經(jīng)常遇到解方程(組)的問題,一般是按照數(shù)學上解方程(組)的方法進行設計,但應注意全面考慮方程解的情況,即先確定方程(組)是否有解,有解時有幾個解,然后根據(jù)求解步驟設計算法步驟。
【變式訓練】
【解】算法如下:S1,①+2×②得5x=1;③
S2,解③得x=;
S3,②-①×2得5y=3;④
S4,解④得y=;
命題方向3篩選問題的算法設計
例3、設計一個算法,對任意3個整數(shù)a、b、c,求出其中的最小值、
[思路分析]比較a,b比較m與c―→最小數(shù)
[規(guī)范解答]算法步驟如下:
1、比較a與b的大小,若a
2、比較m與c的大小,若m
[規(guī)律總結(jié)]求最小(大)數(shù)就是從中篩選出最小(大)的一個,篩選過程中的每一步都是比較兩個數(shù)的大小,保證了篩選的可行性,這種方法可以推廣到從多個不同數(shù)中篩選出滿足要求的一個。
【變式訓練】在下列數(shù)字序列中,寫出搜索89的算法:
21,3,0,9,15,72,89,91,93
[解析]1、先找到序列中的第一個數(shù)m,m=21;
2、將m與89比較,是否相等,如果相等,則搜索到89;
3、如果m與89不相等,則往下執(zhí)行;
4、繼續(xù)將序列中的其他數(shù)賦給m,重復第2步,直到搜索到89。
命題方向4非數(shù)值性問題的算法
例4、一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容一個人和兩只動物,沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會吃掉羚羊。
(1)設計安全渡河的算法;
(2)思考每一步算法所遵循的共同原則是什么?
高中數(shù)學教案6
1. 該生能以校規(guī)班規(guī)嚴格要求自己。有較強的集體榮譽感,學習態(tài)度認真,能吃苦,肯下功夫,成績穩(wěn)定。生活艱苦樸素,待人熱情大方,是個基礎扎實,品德兼優(yōu)的好學生。
2. 該生能嚴格遵守學校的規(guī)章制度。尊敬師長,團結(jié)同學。熱愛集體,積極配合其他同學搞好班務工作,勞動積極肯干。學習刻苦認真,勤學好問,學習成績穩(wěn)定,學風和工作作風都較為踏實,堅持出滿勤,并能積極參加社會實踐和文體活動,勞動積極。是一位發(fā)展全面的好學生。
3. 你是同學擁護、老師信任的班委,乖巧懂事、伶俐開朗、自信大方、樂觀合群,是同學們學習的榜樣。你愛護集體榮譽,有很強的工作能力,總是及時協(xié)助老師完成班務工作,是老師的得力幫手。你心性坦蕩,個性鮮明,能大膽說出自己的想法,難能可貴。而你在運動場上的爆發(fā)力更讓老師同學們驚嘆!潛力深厚,希望在高中時期能逐漸發(fā)掘出來!
4. 你是個做事小心翼翼,感情細膩豐富的女孩,每次看你認真的樣子老師都很感動。你也是幸運的,周邊有很多人都在關愛著你,所以,對他們,尤其是父母,記得不要太莽撞,不要太任性,要學著體諒,學著換位思考,學著懂事。另外,今后要多運動、多鍛煉,有健康才能成就美好未來!
5. 你堅強勇敢、樂觀大方的性格讓老師非常欣賞。學習上始終保持著上進好學的決心和韌性,生活中始終能做到豁達開朗,還有著良好的審美和繪畫的專長,令人欽佩!以入世的態(tài)度做事,以出世的態(tài)度做人,這是我送你的一句話,希望你保持好心態(tài),迎接新的學習生活。
6. 最有希望得成功者,并不是才干出眾的人,而是那些最善于利用時機去努力開創(chuàng)的人。你是很有才華的孩子,老師希望你能把握好機會,求得上進。你聰明,但也有著許多人共同的毛病——粗心大意和缺乏毅力,若能集中精力持之以恒,堅定目標致力于學習,定能大限度地發(fā)揮你的聰明才智!
7. 該生遵紀守法,積極參加社會實踐和文體活動,集體觀念強,勞動積極肯干。是一位誠實守信,思想上進,尊敬老師,團結(jié)同學,熱心助人,積極參加班集體活動,有體育特長,學習認真,具有較好綜合素質(zhì)的優(yōu)秀學生。
8. 你聰穎活潑,渾身洋溢青春氣息。你愛好廣泛,善鉆精思,具備一定能力,潛質(zhì)無限。但是在有些時候,在面臨一些問題的時候,你總表現(xiàn)得太過緊張,其實,征服畏懼、建立自信的最快最確實的方法,就是大膽地去做你認為害怕的事,直到你獲得成功的經(jīng)驗。繼續(xù)努力!
9. 你是對3班這個集體的成長貢獻很大的孩子,是老師的`得力幫手。你干練沉穩(wěn),堅強隱忍,能從大局出發(fā)考慮問題,在很多時候能獨當一面。你獨立能力強,能夠吃苦,但在進入高中的學習上卻顯得有些吃力。其實你還有很深的潛力尚未挖掘,找對方法,好好加油,世上沒有絕望的處境,只有對處境絕望的人,請樂觀一點,踏實地走好接下來的每一步!
10. 你是個能獨立、有主見的女孩,有自己的想法,有一定的決斷力。但是獨立不代表乖張,有想法不代表恣意妄為。令人高興的是,你在這點上做的還是不錯的。晟君,老師希望你能一如既往地關注于學習而不懈怠,能堅持懷揣著平和感恩的心態(tài)簡單快樂地生活。
11. 你給我的第一印象是有些沉默,其實和朋友在一起時還是很有自己想法的對吧?你看,你布置的新年教室多么出彩!請繼續(xù)秀出真實而精彩的你!這半個學期的學習有點力不從心,請保持謹慎和細心,保持好的學習習慣,及時彌補所缺漏的環(huán)節(jié),大步向前進!
12. 該生認真遵守學校的規(guī)章制度,積極參加社會實踐和文體活動,集體觀念強,勞動積極肯干。尊敬師長,團結(jié)同學。學習態(tài)度認真,能吃苦,肯下功夫,成績穩(wěn)定上升。是有理想有抱負,基礎扎實,心理素質(zhì)過硬、全面發(fā)展的優(yōu)秀學生。
13. 你是一個真誠待人、溫柔可愛的女生。也許是因為你有些不緊不慢的性格,所以在學習上有時候行動力不夠堅決,造成了學習成績的不穩(wěn)定。請多利用假期時間好好補缺補漏,向上的姿態(tài)才是最重要的!
14. 老師同學們都在說你是個很有責任心和上進心的孩子,在班級需要的時候,你承擔了勞動委員的重任,經(jīng)常最后一個離開,就為了班級能有個整潔的環(huán)境。老師很感謝你!而更可貴的是,你懂得安排自己的時間,在工作的空隙抓緊時間做作業(yè)。希望下學期你的學習成績也能隨你的毅力和執(zhí)著步步攀升,加油,羽騰!
15. 其實你擁有你自己都不確知的才華,從你的文字中可以讀出這樣的信息:你時常沉醉在自己的小世界中,做自己喜歡做的事情。老師希望你能敞開心扉,多與旁人交流你快樂的體驗和想法,不要吝嗇展示自己!還有,成功需要成本,時間也是一種成本,對時間的珍惜就是對成本的節(jié)約。請務必抓緊每寸光陰,努力學習!
16. 你知道嗎?在世界上那些最容易的事情中,拖延時間是最不費力的。而學習卻是艱辛的勞動過程。表面安靜的你其實心里有著自己的想法和煩憂。于是在不經(jīng)意間,精力被不自覺地轉(zhuǎn)移到一些瑣事上,卻總無法完全集中心智于學業(yè)。也許你也已經(jīng)意識到,也有了些許進步,那么請千萬記住要持之以恒,要付出比別人更多倍的努力!
17. 你是班級的數(shù)學科代表,老師很高興選擇你擔任這個職務,不僅能促進自己的進步,而且也展現(xiàn)了你負責工作的一面。但是學習是要和工作一樣,需要一絲不茍的態(tài)度,包括上課的聽講是否及時而有效,包括功課的完成是否嚴謹而認真。下學期,愿看到一個更加全神貫注更加專心致志的你!
18. 我一直難忘在運動會上你擔任前導牌的樣子,為班級添光增彩了不少!你有著繪畫的特長,是個善良、真誠的女孩,有著細膩豐富的內(nèi)心,也許只需一點鼓勵,你便會勇敢走下去,希望能在平時多聽見你爽朗的笑聲!
19. 可愛、熱情、謹小慎微,這都是你的代名詞。你略為靦腆的微笑讓人印象深刻。老師一直認為你是能夠認真仔細地作好每一件事情、成就每一個細節(jié)的,因此,希望你能珍惜時間,提高效率,在學習上狠狠加油!
20. 其實,任何事都是有重量的,那么,就看你把它變成壓力還是重力了。在這個方面,我很高興地看到你做的很好,你學習自覺,成績便是努力的證明。老師安排你做物理科代表就是希望能多培養(yǎng)你的責任意識、大局意識和管理能力,希望以后在這方面能看到你更加出色的表現(xiàn)!
21. 你是個可愛善良,懂事乖巧的女孩。作為語文科代表,兢兢業(yè)業(yè),一絲不茍。你對人也是特別真誠熱情,偶爾透露出的憂郁是旁人不易察覺的。但是你知道,成長就是破蛹成蝶的過程,高中是人生的重要階段,勇敢地邁好每一步吧,享受成長帶來的所有痛苦和快樂!
22. 你很有能力,也很潛力,但欠缺的卻是耐力和毅力。君子厚積而薄發(fā),希望你能振作精神,跟上進度,迎頭趕上,期待你獲得更大的進步!
23. 你曾經(jīng)和我說過你的理想,但你對理想的憧憬和你所付出的努力程度卻總是難成正比。若現(xiàn)在你覺得有障礙擋在前行之路上,那就說明你還沒有把目標看的足夠清楚。寧在事前心力交瘁的努力,事后悠然自得;也不要在事前悠然自得,而在臨事時無法適從。你現(xiàn)在欠缺的就是對自己發(fā)狠奮進的恒心,柏宇,“要想人前顯貴,必定人后受罪”,成功要靠實踐去爭取,而不是光靠幾句好聽的決心話!
24. 你乖巧大方,組織能力一流,但在學習上總顯得有些力不從心。快馬加鞭迎頭趕上固然是必需,但也別太心急,要知道,欲速則不達,只要踏實努力,不懂就問,采用適合自己的學習方法,就會看到進步。也許剛開始的時候進步很小,小到你看不見,但是不要灰心,萬事開頭難!將事前的憂慮,換為事前的思考和計劃,徹底放松,加強鍛煉,養(yǎng)足精神再迎戰(zhàn)!你能做到的,蔡煒,加油!
25. 該生能遵守校紀班規(guī),尊敬師長,能與同學和睦相處,勤學好問,有較強的獨立鉆研能力,分析問題比較深入、全面,在某些問題上有獨特的見解,學習成績在班上一直能保持前茅,樂于助人,能幫助學習有困難的同學。
26. 不論在體育場還是教室里,看到你神采奕奕的樣子,總讓人聯(lián)想到“英姿颯爽”這四個字。這確是一個高中生應該有的精神面貌。你做事認真,顧全大局,真的非常難得。希望能保持這樣良好的狀態(tài),繼續(xù)前進!也希望能夠多和老師同學交流,多提些對班集體建設的好建議!
27. 該生能以校規(guī)班規(guī)嚴格要求自己,積極參加社會實踐和文體活動。尊敬師長,團結(jié)同學。集體觀念強,勞動積極肯干。積極參加各種集體活動和社會實踐活動。學習目的明確,刻苦認真,成績穩(wěn)定,是一個有理想、有抱負,基礎扎實,心理素質(zhì)過硬,全面發(fā)展的優(yōu)秀學生。
28. 我很高興看到你是個有上進心,有責任感,能夠讓家人、師長寬慰的孩子。有努力就有回報,你下半學期的表現(xiàn)不就證明了這一點嗎?進步是隨著時間節(jié)節(jié)上升的,不要太過急躁,要知道,若你不給自己設限,則人生中就沒有限制你發(fā)揮的藩籬。新學期要重整旗鼓,再接再勵!
29. ××× 獨立性較強,對自己的能力也有準確的定位。建議今后學習上要養(yǎng)成勤思愛問的習慣,不能做井底之蛙,滿足于現(xiàn)狀,要充分利用他人的智慧,最后達到“好風憑借力,送我上青云”的目的。
30. ××× 每天在教室,都能看到你埋頭苦讀的身影,可見讀書的態(tài)度很端正;而你每一次考試的成績雖然不拔尖,卻是在穩(wěn)步前進,可見讀書的效率還不錯。請繼續(xù)保持這種虛心求學、穩(wěn)步前進的態(tài)勢,相信一年半以后的高考,你必將嶄露頭角,脫穎而出。
高中數(shù)學教案7
教學目標:
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.
。2)理解直線與二元一次方程的關系及其證明
(3)培養(yǎng)學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統(tǒng)一的觀點.
教學重點、難點:直線方程的一般式.直線與二元一次方程 ( 、 不同時為0)的對應關系及其證明.
教學用具:計算機
教學方法:啟發(fā)引導法,討論法
教學過程:
下面給出教學實施過程設計的簡要思路:
教學設計思路:
(一)引入的設計
前邊學習了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
問:說出過點 (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是 ,屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.
肯定學生回答,并糾正學生中不規(guī)范的表述.再看一個問題:
問:求出過點 , 的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是 (或其它形式),也屬于二元一次方程,因為未知數(shù)有兩個,它們的最高次數(shù)為一次.
肯定學生回答后強調(diào)“也是二元一次方程,都是因為未知數(shù)有兩個,它們的最高次數(shù)為一次”.
啟發(fā):你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.
學生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導,使學生的認識統(tǒng)一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
。ǘ┍竟(jié)主體內(nèi)容教學的設計
這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.
學生或獨立研究,或合作研究,教師巡視指導.
經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.
當 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.
當 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?
學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
平面直角坐標系中直線 上點的坐標形式,與其它直線上點的坐標形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.
綜合兩種情況,我們得出如下結(jié)論:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于 、 的二元一次方程.
至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準確地說應該是“要么形如 這樣,要么形如 這樣的方程”.
同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
學生們不難得出:二者可以概括為統(tǒng)一的形式.
這樣上邊的結(jié)論可以表述如下:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.
啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?
【問題2】任何形如 (其中 、 不同時為0)的'二元一次方程都表示一條直線嗎?
不難看出上邊的結(jié)論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結(jié)論.那么如何研究呢?
師生共同討論,評價不同思路,達成共識:
回顧上邊解決問題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數(shù) 是否為0恰好對應斜率 是否存在,即
。1)當 時,方程可化為
這是表示斜率為 、在 軸上的截距為 的直線.
。2)當 時,由于 、 不同時為0,必有 ,方程可化為
這表示一條與 軸垂直的直線.
因此,得到結(jié)論:
在平面直角坐標系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.
為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.
【動畫演示】
演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線.
至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉(zhuǎn)化關系.
。ㄈ┚毩曥柟獭⒖偨Y(jié)提高、板書和作業(yè)等環(huán)節(jié)的設計
略
高中數(shù)學教案8
一、教材分析
1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個空間圖形!岸娼恰笔侨私贪妗稊(shù)學》第二冊(下B)中9.7的內(nèi)容。它是在學生學過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學生進一步研究多面體的基礎。因此,它起著承上啟下的作用。通過本節(jié)課的學習還對學生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
2、教學目標:
知識目標:(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。
。2)進一步培養(yǎng)學生把空間問題轉(zhuǎn)化為平面問題的化歸思想。
能力目標:(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學生的創(chuàng)新能力。(2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。
德育目標:(1)使學生認識到數(shù)學知識來自實踐,并服務于實踐,增強學生應用數(shù)學的意識(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進一步培養(yǎng)學生聯(lián)系的辯證唯物主義觀點。
情感目標:在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,拉近學生之間、師生之間的情感距離。
3、重點、難點:
重點:“二面角”和“二面角的平面角”的.概念
難點:“二面角的平面角”概念的形成過程
二、教法分析
1、教學方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導、活動探究和類比發(fā)現(xiàn)法,在形成技能時以訓練法、探究研討法為主。
2、教學控制與調(diào)節(jié)的措施:本節(jié)課由于充分運用了多媒體和實物教具,預計學生對二面角及二面角平面角的概念能夠理解,根據(jù)學生及教學的實際情況,估計二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。
3、教學手段:教學手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學需要,確定利用多媒體課件來輔助教學;此外,為加強直觀教學,還要預先做好一些二面角的模型。
三、學法指導
1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學習中去,成為學習的主人。
2、學會:在掌握基礎知識的同時,學生要注意領會化歸、類比聯(lián)想等數(shù)學思想方法的運用,學會建立完善的認知結(jié)構。
3、會學:通過自己親身參與,學生要領會復習類比和深入研究這兩種知識創(chuàng)新的方法,從而既學到知識,又學會創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。
四、教學過程
心理學研究表明,當學生明確數(shù)學概念的學習目的和意義時,就會對概念的學習產(chǎn)生濃厚的興趣。創(chuàng)設問題情境,激發(fā)了學生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。
。ㄒ唬⒍娼
1、揭示概念產(chǎn)生背景。
問題情境1、在平面幾何中“角”是怎樣定義的?
問題情境2、在立體幾何中我們還學習了哪些角?
問題情境3、運用多媒體和身邊的實例,展示我們遇到的另一種空間的角——二面角(板書課題)。
通過這三個問題,打開了學生的原有認知結(jié)構,為知識的創(chuàng)新做好了準備;同時也讓學生領會到,二面角這一概念的產(chǎn)生是因為它與我們的生活密不可分,激發(fā)學生的求知欲。2、展現(xiàn)概念形成過程。
問題情境4、那么,應該如何定義二面角呢?
創(chuàng)設這個問題情境,為學生創(chuàng)新思維的展開提供了空間。引導學生回憶平面幾何中“角”這一概念的引入過程。教師應注意多讓學生說,對于學生的創(chuàng)新意識和創(chuàng)新結(jié)果,教師要給與積極的評價。
問題情境5、同學們能舉出一些二面角的實例嗎?通過實際運用,可以促使學生更加深刻地理解概念。
。ǘ、二面角的平面角
1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個旋轉(zhuǎn)量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面
與平面的位置關系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,我們有必要來研究二面角的度量問題。
問題情境6、二面角的大小應該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。
2、展現(xiàn)概念形成過程
。1)、類比。教師啟發(fā),尋找類比聯(lián)想的對象。
問題情境7、我們以前碰到過類似的問題嗎?引導學生回憶前面所學過的兩種空間角的定義,電腦演示以提高效率。
問題情境8、兩定義的共同點是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個角是唯一確定的。
問題情境9、這個平面的角的頂點及兩邊是如何確定的?
。2)、提出猜想:二面角的大小也可通過平面的角來定義。對學生提出的猜想,教師應該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識和習慣,這對強化他們的創(chuàng)新意識大有幫助。
問題情境10、那么,這個角的頂點及兩邊應如何確定呢?生:頂點放在棱上,兩邊分別放在兩個面內(nèi)。這也是學生直覺思維的結(jié)果。
。3)、探索實驗。通過實驗,激發(fā)了學生的學習興趣,培養(yǎng)了學生的動手操作能力。
。4)、繼續(xù)探索,得到定義。
問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的頂點確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。
。5)、自我驗證:要求學生閱讀課本上的定義。并說明定義的合理性,教師作適當?shù)囊龑,并加以理論證明。
。ㄈ、二面角及其平面角的畫法
主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。
。ㄋ模、范例分析
為鞏固學生所學知識,由于時間的關系設置了一道例題。來源于實際生活,不但培養(yǎng)了學生分析問題和解決問題的能力,也讓學生領會到數(shù)學概念來自生活實際,并服務于生活實際,從而增強他們應用數(shù)學的意識。
例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點間的距離。
分析:涉及二面角的計算問題,關鍵是找出(或作出)該二面角的平面角。引導學生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角?勺寣W生先做,為調(diào)動學生的積極性,并增加學生的參與感,活躍課堂的氣氛,教師可給學生板演的機會。教師講評時強調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。
變式訓練:圖中共有幾個二面角?能求出它們的大小嗎?根據(jù)課堂實際情況,本題的變式訓練也可作為課后思考題。
題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。
(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)
。ㄎ澹、練習、小結(jié)與作業(yè)
練習:習題9.7的第3題
小結(jié)在復習完二面角及其平面角的概念后,要求學生對空間中三種角加以比較、歸納,以促成學生建立起空間中角這一概念系統(tǒng)。同時要求學生對本節(jié)課的學習方法進行總結(jié),領會復習類比和深入研究這兩種知識創(chuàng)新的方法。
作業(yè):習題9.7的第4題
思考題:見例題
五、板書設計(見課件)
以上是我對《二面角》授課的初步設想,不足之處,懇請大家批評指正,謝謝!
高中數(shù)學教案9
一、教學目標
知識與技能:
理解任意角的概念(包括正角、負角、零角)與區(qū)間角的概念。
過程與方法:
會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。
情感態(tài)度與價值觀:
1、提高學生的推理能力;
2、培養(yǎng)學生應用意識。
二、教學重點、難點:
教學重點:
任意角概念的理解;區(qū)間角的集合的書寫。
教學難點:
終邊相同角的集合的表示;區(qū)間角的集合的書寫。
三、教學過程
。ㄒ唬⿲胄抡n
1、回顧角的定義
①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角。
、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
(二)教學新課
1、角的有關概念:
①角的定義:
角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的.圖形。
②角的名稱:
注意:
、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡化成“α ”;
⑵零角的終邊與始邊重合,如果α是零角α =0°;
、墙堑母拍罱(jīng)過推廣后,已包括正角、負角和零角。
、菥毩暎赫堈f出角α、β、γ各是多少度?
2、象限角的概念:
、俣x:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。
例1、如圖⑴⑵中的角分別屬于第幾象限角?
高中數(shù)學教案10
教學目標
知識與技能目標:
本節(jié)的中心任務是研究導數(shù)的幾何意義及其應用,概念的形成分為三個層次:
(1)通過復習舊知“求導數(shù)的兩個步驟”以及“平均變化率與割線斜率的關系”,解決了平均變化率的幾何意義后,明確探究導數(shù)的幾何意義可以依據(jù)導數(shù)概念的形成尋求解決問題的途徑。
(2)從圓中割線和切線的變化聯(lián)系,推廣到一般曲線中用割線逼近的方法直觀定義切線。
(3)依據(jù)割線與切線的變化聯(lián)系,數(shù)形結(jié)合探究函數(shù)導數(shù)的幾何意義教案在導數(shù)的幾何意義教案處的導數(shù)導數(shù)的幾何意義教案的幾何意義,使學生認識到導數(shù)導數(shù)的幾何意義教案就是函數(shù)導數(shù)的幾何意義教案的圖象在導數(shù)的幾何意義教案處的切線的斜率。即:
導數(shù)的幾何意義教案=曲線在導數(shù)的幾何意義教案處切線的斜率k
在此基礎上,通過例題和練習使學生學會利用導數(shù)的幾何意義解釋實際生活問題,加深對導數(shù)內(nèi)涵的理解。在學習過程中感受逼近的思想方法,了解“以直代曲”的數(shù)學思想方法。
過程與方法目標:
(1)學生通過觀察感知、動手探究,培養(yǎng)學生的動手和感知發(fā)現(xiàn)的能力。
(2)學生通過對圓的切線和割線聯(lián)系的認識,再類比探索一般曲線的情況,完善對切線的認知,感受逼近的思想,體會相切是種局部性質(zhì)的本質(zhì),有助于數(shù)學思維能力的提高。
(3)結(jié)合分層的探究問題和分層練習,期望各種層次的學生都可以憑借自己的能力盡力走在教師的前面,獨立解決問題和發(fā)現(xiàn)新知、應用新知。
情感、態(tài)度、價值觀:
(1)通過在探究過程中滲透逼近和以直代曲思想,使學生了解近似與精確間的辨證關系;通過有限來認識無限,體驗數(shù)學中轉(zhuǎn)化思想的意義和價值;
(2)在教學中向他們提供充分的從事數(shù)學活動的機會,如:探究活動,讓學生自主探究新知,例題則采用練在講之前,講在關鍵處。在活動中激發(fā)學生的學習潛能,促進他們真正理解和掌握基本的數(shù)學知識技能、數(shù)學思想方法,獲得廣泛的數(shù)學活動經(jīng)驗,提高綜合能力,學會學習,進一步在意志力、自信心、理性精神等情感與態(tài)度方面得到良好的發(fā)展。
教學重點與難點
重點:理解和掌握切線的新定義、導數(shù)的幾何意義及應用于解決實際問題,體會數(shù)形結(jié)合、以直代曲的思想方法。
難點:發(fā)現(xiàn)、理解及應用導數(shù)的幾何意義。
教學過程
一、復習提問
1.導數(shù)的定義是什么?求導數(shù)的三個步驟是什么?求函數(shù)y=x2在x=2處的導數(shù).
定義:函數(shù)在導數(shù)的幾何意義教案處的導數(shù)導數(shù)的幾何意義教案就是函數(shù)在該點處的瞬時變化率。
求導數(shù)的步驟:
第一步:求平均變化率導數(shù)的幾何意義教案;
第二步:求瞬時變化率導數(shù)的幾何意義教案.
(即導數(shù)的幾何意義教案,平均變化率趨近于的確定常數(shù)就是該點導數(shù))
2.觀察函數(shù)導數(shù)的幾何意義教案的圖象,平均變化率導數(shù)的幾何意義教案在圖形中表示什么?
生:平均變化率表示的是割線PQ的斜率.導數(shù)的幾何意義教案
師:這就是平均變化率(導數(shù)的幾何意義教案)的幾何意義,
3.瞬時變化率(導數(shù)的幾何意義教案)在圖中又表示什么呢?
如圖2-1,設曲線C是函數(shù)y=f(x)的圖象,點P(x0,y0)是曲線C上一點.點Q(x0+Δx,y0+Δy)是曲線C上與點P鄰近的任一點,作割線PQ,當點Q沿著曲線C無限地趨近于點P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點P處的切線.
導數(shù)的幾何意義教案
追問:怎樣確定曲線C在點P的切線呢?因為P是給定的,根據(jù)平面解析幾何中直線的點斜式方程的知識,只要求出切線的斜率就夠了.設割線PQ的傾斜角為導數(shù)的幾何意義教案,切線PT的傾斜角為導數(shù)的幾何意義教案,易知割線PQ的斜率為導數(shù)的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導數(shù)的幾何意義教案,即導數(shù)的幾何意義教案。
由導數(shù)的定義知導數(shù)的幾何意義教案導數(shù)的幾何意義教案。
導數(shù)的幾何意義教案
由上式可知:曲線f(x)在點(x0,f(x0))處的切線的斜率就是y=f(x)在點x0處的`導數(shù)f'(x0).今天我們就來探究導數(shù)的幾何意義。
C類學生回答第1題,A,B類學生回答第2題在學生回答基礎上教師重點講評第3題,然后逐步引入導數(shù)的幾何意義.
二、新課
1、導數(shù)的幾何意義:
函數(shù)y=f(x)在點x0處的導數(shù)f'(x0)的幾何意義,就是曲線y=f(x)在點(x0,f(x0))處切線的斜率.
即:導數(shù)的幾何意義教案
口答練習:
(1)如果函數(shù)y=f(x)在已知點x0處的導數(shù)分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數(shù)圖像在對應點的切線的傾斜角,并說明切線各有什么特征。
(C層學生做)
(2)已知函數(shù)y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數(shù)在各點的導數(shù).(A、B層學生做)
導數(shù)的幾何意義教案
2、如何用導數(shù)研究函數(shù)的增減?
小結(jié):附近:瞬時,增減:變化率,即研究函數(shù)在該點處的瞬時變化率,也就是導數(shù)。導數(shù)的正負即對應函數(shù)的增減。作出該點處的切線,可由切線的升降趨勢,得切線斜率的正負即導數(shù)的正負,就可以判斷函數(shù)的增減性,體會導數(shù)是研究函數(shù)增減、變化快慢的有效工具。
同時,結(jié)合以直代曲的思想,在某點附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數(shù)的增減性。都反應了導數(shù)是研究函數(shù)增減、變化快慢的有效工具。
例1函數(shù)導數(shù)的幾何意義教案上有一點導數(shù)的幾何意義教案,求該點處的導數(shù)導數(shù)的幾何意義教案,并由此解釋函數(shù)的增減情況。
導數(shù)的幾何意義教案
函數(shù)在定義域上任意點處的瞬時變化率都是3,函數(shù)在定義域內(nèi)單調(diào)遞增。(此時任意點處的切線就是直線本身,斜率就是變化率)
3、利用導數(shù)求曲線y=f(x)在點(x0,f(x0))處的切線方程.
例2求曲線y=x2在點M(2,4)處的切線方程.
解:導數(shù)的幾何意義教案
∴y'|x=2=2×2=4.
∴點M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.
由上例可歸納出求切線方程的兩個步驟:
(1)先求出函數(shù)y=f(x)在點x0處的導數(shù)f'(x0).
(2)根據(jù)直線方程的點斜式,得切線方程為y-y0=f'(x0)(x-x0).
提問:若在點(x0,f(x0))處切線PT的傾斜角為導數(shù)的幾何意義教案導數(shù)的幾何意義教案,求切線方程。(因為這時切線平行于y軸,而導數(shù)不存在,不能用上面方法求切線方程。根據(jù)切線定義可直接得切線方程導數(shù)的幾何意義教案)
(先由C類學生來回答,再由A,B補充.)
例3已知曲線導數(shù)的幾何意義教案上一點導數(shù)的幾何意義教案,求:(1)過P點的切線的斜率;
(2)過P點的切線的方程。
解:(1)導數(shù)的幾何意義教案,
導數(shù)的幾何意義教案
y'|x=2=22=4. ∴在點P處的切線的斜率等于4.
(2)在點P處的切線方程為導數(shù)的幾何意義教案即12x-3y-16=0.
練習:求拋物線y=x2+2在點M(2,6)處的切線方程.
(答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).
B類學生做題,A類學生糾錯。
三、小結(jié)
1.導數(shù)的幾何意義.(C組學生回答)
2.利用導數(shù)求曲線y=f(x)在點(x0,f(x0))處的切線方程的步驟.
(B組學生回答)
四、布置作業(yè)
1.求拋物線導數(shù)的幾何意義教案在點(1,1)處的切線方程。
2.求拋物線y=4x-x2在點A(4,0)和點B(2,4)處的切線的斜率,切線的方程.
3.求曲線y=2x-x3在點(-1,-1)處的切線的傾斜角
4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點的坐標; (2)拋物線在交點處的切線方程;
(C組學生完成1,2題;B組學生完成1,2,3題;A組學生完成2,3,4題)
教學反思:
本節(jié)內(nèi)容是在學習了“變化率問題、導數(shù)的概念”等知識的基礎上,研究導數(shù)的幾何意義,由于新教材未設計極限,于是我盡量采用形象直觀的方式,讓學生通過動手作圖,自我感受整個逼近的過程,讓學生更加深刻地體會導數(shù)的幾何意義及“以直代曲”的思想。
本節(jié)課主要圍繞著“利用函數(shù)圖象直觀理解導數(shù)的幾何意義”和“利用導數(shù)的幾何意義解釋實際問題”兩個教學重心展開。先回憶導數(shù)的實際意義、數(shù)值意義,由數(shù)到形,自然引出從圖形的角度研究導數(shù)的幾何意義;然后,類比“平均變化率——瞬時變化率”的研究思路,運用逼近的思想定義了曲線上某點的切線,再引導學生從數(shù)形結(jié)合的角度思考,獲得導數(shù)的幾何意義——“導數(shù)是曲線上某點處切線的斜率”。
完成本節(jié)課第一階段的內(nèi)容學習后,教師點明,利用導數(shù)的幾何意義,在研究實際問題時,某點附近的曲線可以用過此點的切線近似代替,即“以直代曲”,從而達到“以簡單的對象刻畫復雜對象”的目的,并通過兩個例題的研究,讓學生從不同的角度完整地體驗導數(shù)與切線斜率的關系,并感受導數(shù)應用的廣泛性。本節(jié)課注重以學生為主體,每一個知識、每一個發(fā)現(xiàn),總設法由學生自己得出,課堂上給予學生充足的思考時間和空間,讓學生在動手操作、動筆演算等活動后,再組織討論,本教師只是在關鍵處加以引導。從學生的作業(yè)看來,效果較好。
高中數(shù)學教案11
高中數(shù)學趣味競賽題(共10題)
1 、撒謊的有幾人
5個高中生有,她們面對學校的新聞采訪說了如下的話:
愛:“我還沒有談過戀愛! 靜香:“愛撒謊了!
瑪麗:“我曾經(jīng)去過昆明! 惠美:“瑪麗在撒謊!
千葉子:“瑪麗和惠美都在撒謊! 那么,這5個人之中到底有幾個人在撒謊呢?
2、她們到底是誰
有天使、惡魔、人三者,天使時刻都說真話,惡魔時時刻刻都說假話,人呢,有時候說真話,有時候說假話。
穿黑色衣服的女子說:“我不是天使。” 穿藍色衣服的女子說:“我不是人! 穿白色衣服的女子說:“我不是惡魔!蹦敲矗@三人到底分別是誰呢?
3、半只小貓
聽說祖父家的波斯貓生了好多小貓,喜歡貓的我興高采烈地來到祖父家?墒,只剩下1只小貓了。
“一共生了幾只小貓呀?” “猜猜看,要是猜中了,就把剩下的這只小貓給你。附近的寵物店聽說以后,馬上來買走了所有小貓的`一半和半只! “半只?”“是啊,然后,鄰居家的老奶奶無論如何都要,所以就把剩下的一半和另外半只給了她。這就是只剩下1只小貓的原因。那么你想想看,一共生了幾只小貓呢?
4、被蟲子吃掉的算式
一只愛吃墨水的蟲子把下圖的算式中的數(shù)字全部吃掉了。當然,沒有數(shù)字的部分它沒有吃(因為沒有墨水)。
那么,請問原來的算式是什么樣子的呢?
5、巧動火柴
用16根火柴擺成5個正方形。請移動2根火柴,
使
正形變成4。
6、折過來的角
把正三角形的紙如圖那樣折過來時,角?的度數(shù)是多少度?
7、星形角之和
求星形尖端的角度之和。
8、。‰p胞胎?
丈夫臨死前,給有身孕的妻子留下遺言說,生的是男孩就給他財產(chǎn)的 2/3 、如果生的是女孩就給他財產(chǎn)的 2/5 、剩下的給妻子。
結(jié)果,生出來的是孿生兄妹——雙胞胎。這可難壞了妻子,3個人怎么分財產(chǎn)好呢?
9、贈送和降價哪個更好?
1罐100元的咖啡,“買5罐送1罐”和“買5罐便宜20%”這兩種促銷方法哪一種好呢?還是兩種方法一樣好?
10、折成15度
用折紙做成45度很簡單是吧。那么,請折成15度,你會嗎?
高中數(shù)學教案12
猴子搬香蕉
一個小猴子邊上有100根香蕉,它要走過50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請問它最多能把多少根香蕉搬到家里?
解答:
100只香蕉分兩次,一次運50只,走1米,再回去搬另外50只,這樣走了1米的時候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時候剩下46+48只;...到16米的時候剩下(50-2×16)+(50-16)=18+34只;17米的時候剩下16+33只,共49只;然后把剩下的這49只一次運回去,要走剩下的33米,每米吃一個,到家還有16個香蕉。
河岸的距離
兩艘輪船在同一時刻駛離河的兩岸,一艘從A駛往B,另一艘從B開往A,其中一艘開得比另一艘快些,因此它們在距離較近的岸500公里處相遇。到達預定地點后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問河有多寬?
解答:
當兩艘渡輪在x點相遇時,它們距A岸500公里,此時它們走過的距離總和等于河的寬度。當它們雙方抵達對岸時,走過的總長度
等于河寬的兩倍。在返航中,它們在z點相遇,這時兩船走過的距離之和等于河寬的三倍,所以每一艘渡輪現(xiàn)在所走的距離應該等于它們第一次相遇時所走的距離的三倍。在兩船第一次相遇時,有一艘渡輪走了500公里,所以當它到達z點時,已經(jīng)走了三倍的.距離,即1500公里,這個距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時間對答案毫無影響。
變量交換
不使用任何其他變量,交換a,b變量的值?
分析與解答
a = a+b
b = a-b
a= a-b
步行時間
某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區(qū)一個小鎮(zhèn)的附近。他每次下班以后都是乘同一次市郊火車回小鎮(zhèn)。小鎮(zhèn)車站離家還有一段距離,他的私人司機總是在同一時刻從家里開出轎車,去小鎮(zhèn)車站接總裁回家。由于火車與轎車都十分準時,因此,火車與轎車每次都是在同一時刻到站。
有一次,司機比以往遲了半個小時出發(fā)。溫斯頓到站后,找不到
他的車子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車正風馳電掣而來,立即招手示意停車,跳上車子后也顧不上罵司機,命其馬上掉頭往回開;氐郊抑,果不出所料,他老婆大發(fā)雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長時間?
解答:
假如溫斯頓一直在車站等候,那么由于司機比以往晚了半小時出發(fā),因此,也將晚半小時到達車站。也就是說,溫斯頓將在車站空等半小時,等他的轎車到達后坐車回家,從而他將比以往晚半小時到家。而現(xiàn)在溫斯頓只比平常晚22分鐘到家,這縮短下來的8分鐘是如果總裁在火車站死等的話,司機本來要花在從現(xiàn)在遇到溫斯頓總裁的地點到火車站再回到這個地點上的時間。這意味著,如果司機開車從現(xiàn)在遇到總裁的地點趕到火車站,單程所花的時間將為4分鐘。因此,如果溫斯頓等在火車站,再過4分鐘,他的轎車也到了。也就是說,他如果等在火車站,那么他也已經(jīng)等了30-4=26分鐘了。但是懼內(nèi)的溫斯頓總裁畢竟沒有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。
因此,溫斯頓步行了26分鐘。
付清欠款
有四個人借錢的數(shù)目分別是這樣的:阿伊庫向貝爾借了10美元;
貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫借了40美元。碰巧四個人都在場,決定結(jié)個賬,請問最少只需要動用多少美金就可以將所有欠款一次付清?
解答:
貝爾、查理、迪克各自拿出10美元給阿伊庫就可解決問題了。這樣的話只動用了30美元。最笨的辦法就是用100美元來一一付清。
貝爾必須拿出10美元的欠額,查理和迪克也一樣;而阿伊庫則要收回借出的30美元。再復雜的問題只要有條理地分析就會很簡單。養(yǎng)成經(jīng)常性地歸納整理、摸索實質(zhì)的好習慣。
一美元紙幣
注:美國貨幣中的硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。
一家小店剛開始營業(yè),店堂中只有三位男顧客和一位女店主。當這三位男士同時站起來付帳的時候,出現(xiàn)了以下的情況:
(1)這四個人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。
。2)這四人中沒有一人能夠兌開任何一枚硬幣。
。3)一個叫盧的男士要付的賬單款額最大,一位叫莫的男士要
付的帳單款額其次,一個叫內(nèi)德的男士要付的賬單款額最小。
。4)每個男士無論怎樣用手中所持的硬幣付賬,女店主都無法找清零錢。
(5)如果這三位男士相互之間等值調(diào)換一下手中的硬幣,則每個人都可以付清自己的賬單而無需找零。
(6)當這三位男士進行了兩次等值調(diào)換以后,他們發(fā)現(xiàn)手中的硬幣與各人自己原先所持的硬幣沒有一枚面值相同。
。7)隨著事情的進一步發(fā)展,又出現(xiàn)如下的情況:
。8)在付清了賬單而且有兩位男士離開以后,留下的男士又買了一些糖果。這位男士本來可以用他手中剩下的硬幣付款,可是女店主卻無法用她現(xiàn)在所持的硬幣找清零錢。于是,這位男士用1美元的紙幣付了糖果錢,但是現(xiàn)在女店主不得不把她的全部硬幣都找給了他。
現(xiàn)在,請你不要管那天女店主怎么會在找零上屢屢遇到麻煩,這三位男士中誰用1美元的紙幣付了糖果錢?
解答:
對題意的以下兩點這樣理解:
(2)中不能換開任何一個硬幣,指的是如果任何一個人不能有2個5分,否則他能換1個10分硬幣。
。6)中指如果A,B換過,并且A,C換過,這就是兩次交換。
高中數(shù)學教案13
1.1.1 任意角
教學目標
(一) 知識與技能目標
理解任意角的概念(包括正角、負角、零角) 與區(qū)間角的概念.
(二) 過程與能力目標
會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫.
。ㄈ 情感與態(tài)度目標
1. 提高學生的推理能力;
2.培養(yǎng)學生應用意識. 教學重點
任意角概念的理解;區(qū)間角的集合的書寫. 教學難點
終邊相同角的集合的表示;區(qū)間角的集合的書寫.
教學過程
一、引入:
1.回顧角的定義
、俳堑牡谝环N定義是有公共端點的兩條射線組成的圖形叫做角.
②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形.
二、新課:
1.角的有關概念:
、俳堑亩x:
角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形.
、诮堑拿Q:
、劢堑姆诸悾 A
正角:按逆時針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角
負角:按順時針方向旋轉(zhuǎn)形成的角
、茏⒁猓
⑴在不引起混淆的情況下,“角α ”或“∠α ”可以簡化成“α ”;
、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;
、墙堑母拍罱(jīng)過推廣后,已包括正角、負角和零角.
、菥毩暎赫堈f出角α、β、γ各是多少度?
2.象限角的概念:
、俣x:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角.
例1.在直角坐標系中,作出下列各角,并指出它們是第幾象限的.角.
、 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分別為1、2、3、4、1、2象限角.
3.探究:教材P3面
終邊相同的角的表示:
所有與角α終邊相同的角,連同α在內(nèi),可構成一個集合S={ β | β = α +
k·360° ,
k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個周角的和. 注意: ⑴ k∈Z
、 α是任一角;
⑶ 終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個,它們相差
360°的整數(shù)倍;
、 角α + k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.
例2.在0°到360°范圍內(nèi),找出與下列各角終邊相等的角,并判斷它們是第幾象限角.
、牛120°;
、640°;
、牵950°12’.
答:⑴240°,第三象限角;
、280°,第四象限角;
、129°48’,第二象限角;
例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.
例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.
4.課堂小結(jié)
、俳堑亩x;
②角的分類:
正角:按逆時針方向旋轉(zhuǎn)形成的角 零角:射線沒有任何旋轉(zhuǎn)形成的角
負角:按順時針方向旋轉(zhuǎn)形成的角
、巯笙藿牵
、芙K邊相同的角的表示法.
5.課后作業(yè):
、匍喿x教材P2-P5;
、诮滩腜5練習第1-5題;
③教材P.9習題1.1第1、2、3題 思考題:已知α角是第三象限角,則2α,
解:??角屬于第三象限,
? k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或終邊在y軸的非負半軸上的角. 又k·180°+90°<
各是第幾象限角?
<k·180°+135°(k∈Z) .
。糿·360°+135°(n∈Z) ,
當k為偶數(shù)時,令k=2n(n∈Z),則n·360°+90°<此時,
屬于第二象限角
。糿·360°+315°(n∈Z) ,
當k為奇數(shù)時,令k=2n+1 (n∈Z),則n·360°+270°<此時,
屬于第四象限角
因此
屬于第二或第四象限角.
1.1.2弧度制
(一)
教學目標
。ǘ 知識與技能目標
理解弧度的意義;了解角的集合與實數(shù)集R之間的可建立起一一對應的關系;熟記特殊角的弧度數(shù).
(三) 過程與能力目標
能正確地進行弧度與角度之間的換算,能推導弧度制下的弧長公式及扇形的面積公式,并能運用公式解決一些實際問題
(四) 情感與態(tài)度目標
通過新的度量角的單位制(弧度制)的引進,培養(yǎng)學生求異創(chuàng)新的精神;通過對弧度制與角度制下弧長公式、扇形面積公式的對比,讓學生感受弧長及扇形面積公式在弧度制下的簡潔美. 教學重點
弧度的概念.弧長公式及扇形的面積公式的推導與證明. 教學難點
“角度制”與“弧度制”的區(qū)別與聯(lián)系.
教學過程
一、復習角度制:
初中所學的角度制是怎樣規(guī)定角的度量的? 規(guī)定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.
二、新課:
1.引 入:
由角度制的定義我們知道,角度是用來度量角的, 角度制的度量是60進制的,運用起來不太方便.在數(shù)學和其他許多科學研究中還要經(jīng)常用到另一種度量角的制度—弧度制,它是如何定義呢?
2.定 義
我們規(guī)定,長度等于半徑的弧所對的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下, 1弧度記做1rad.在實際運算中,常常將rad單位省略.
3.思考:
。1)一定大小的圓心角?所對應的弧長與半徑的比值是否是確定的?與圓的半徑大小有關嗎?
。2)引導學生完成P6的探究并歸納: 弧度制的性質(zhì):
、侔雸A所對的圓心角為
、谡麍A所對的圓心角為
、壅堑幕《葦(shù)是一個正數(shù).
、茇摻堑幕《葦(shù)是一個負數(shù).
、萘憬堑幕《葦(shù)是零.
、藿铅恋幕《葦(shù)的絕對值|α|= .
4.角度與弧度之間的轉(zhuǎn)換:
①將角度化為弧度:
、趯⒒《然癁榻嵌龋
5.常規(guī)寫法:
① 用弧度數(shù)表示角時,常常把弧度數(shù)寫成多少π 的形式, 不必寫成小數(shù).
、 弧度與角度不能混用.
弧長等于弧所對應的圓心角(的弧度數(shù))的絕對值與半徑的積.
例1.把67°30’化成弧度.
例2.把? rad化成度.
例3.計算:
(1)sin4
(2)tan1.5.
8.課后作業(yè):
①閱讀教材P6 –P8;
、诮滩腜9練習第1、2、3、6題;
、劢滩腜10面7、8題及B2、3題.
高中數(shù)學教案14
教學目的:掌握圓的標準方程,并能解決與之有關的問題
教學重點:圓的標準方程及有關運用
教學難點:標準方程的靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:⒈說出下列圓的方程
⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3
、仓赋鱿铝袌A的圓心和半徑
、牛▁-2)2+(y+3)2=3
⑵x2+y2=2
、莤2+y2-6x+4y+12=0
、撑袛3x-4y-10=0和x2+y2=4的位置關系
⒋圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學方法)
練習:1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的`跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結(jié)練習P771,2,3,4
五、作業(yè)P811,2,3,4
高中數(shù)學教案15
教學目標:
1.理解流程圖的選擇結(jié)構這種基本邏輯結(jié)構.
2.能識別和理解簡單的框圖的功能.
3. 能運用三種基本邏輯結(jié)構設計流程圖以解決簡單的問題.
教學方法:
1. 通過模仿、操作、探索,經(jīng)歷設計流程圖表達求解問題的過程,加深對流程圖的感知.
2. 在具體問題的'解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構.
教學過程:
一、問題情境
1.情境:
某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的重量.
試給出計算費用(單位:元)的一個算法,并畫出流程圖.
二、學生活動
學生討論,教師引導學生進行表達.
解 算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費.
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6.
在上述計費過程中,第二步進行了判斷.
三、建構數(shù)學
1.選擇結(jié)構的概念:
先根據(jù)條件作出判斷,再決定執(zhí)行哪一種
操作的結(jié)構稱為選擇結(jié)構.
如圖:虛線框內(nèi)是一個選擇結(jié)構,它包含一個判斷框,當條件成立(或稱條件為“真”)時執(zhí)行,否則執(zhí)行.
2.說明:(1)有些問題需要按給定的條件進行分析、比較和判斷,并按判
斷的不同情況進行不同的操作,這類問題的實現(xiàn)就要用到選擇結(jié)構的設計;
(2)選擇結(jié)構也稱為分支結(jié)構或選取結(jié)構,它要先根據(jù)指定的條件進行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;
。3)在上圖的選擇結(jié)構中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)
行,但或兩個框中可以有一個是空的,即不執(zhí)行任何操作;
(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進入點和
兩個退出點.
3.思考:教材第7頁圖所示的算法中,哪一步進行了判斷?
【高中數(shù)學教案】相關文章:
高中數(shù)學教案04-11
高中數(shù)學教案(15篇)08-18
高中數(shù)學教案(集合15篇)12-30
高中數(shù)學教案(集錦15篇)12-28
高中數(shù)學教案匯編15篇01-07
高中數(shù)學教案(通用15篇)01-22
高中數(shù)學教案(合集15篇)01-29
高中數(shù)學教案合集15篇01-31
角數(shù)學教案11-30