- 相關(guān)推薦
《圓柱的體積》教案集錦七篇
作為一名專為他人授業(yè)解惑的人民教師,通常會被要求編寫教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編為大家收集的《圓柱的體積》教案7篇,希望對大家有所幫助。
《圓柱的體積》教案 篇1
教學(xué)目標(biāo):
1、知識與技能:通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,使學(xué)生理解圓柱的體積公式的推導(dǎo)過程能夠運(yùn)用公式正確地計算圓柱的體積。
2、過程與方法:讓學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗數(shù)學(xué)研究法。
3、情感態(tài)度與價值觀:通過圓柱體積計算公式的推導(dǎo)、運(yùn)用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點(diǎn):掌握和運(yùn)用圓柱體積計算公式進(jìn)行正確計算。
教學(xué)難點(diǎn):理解圓柱體積計算公式的推導(dǎo)過程,體會“轉(zhuǎn)化”方法的價值。
教學(xué)過程:
一、情景導(dǎo)入:
1、教師:(出示)多么溫馨的場面,今天是亮亮和爺爺?shù)纳,幸福的一家人圍坐在飯桌前享用著美酒佳肴,你能觀察到今天的飯菜比平時多了什么嗎?
學(xué)生:1、比平日多了兩個蛋糕。
2、兩個蛋糕一個大一個小。
3、蛋糕都是圓柱形的。
2、教師:同學(xué)們觀察的很仔細(xì),那你能根據(jù)剛學(xué)過的知識說一說爺爺?shù)案廨^大意味著什么嗎?
學(xué)生:蛋糕大,意味著圓柱的體積大。
3、教師:那你還知道什么是圓柱的'體積嗎?
學(xué)生:圓柱的體積就是圓柱體占空間的大小。
4、教師:兩個蛋糕的體積相差較多,我們?nèi)菀妆容^出那個體積大,如果體積相差較小我們怎么比較呢?
學(xué)生:拿出準(zhǔn)備的圓柱體進(jìn)行比較,討論,各小組分別說明比較的方法并展示。
教師:板書:圓柱的體積
二、課上探究
1、教師:同學(xué)們回憶一下我們還學(xué)過那些立體圖形?
學(xué)生:還學(xué)過正方體和長方體。
教師:它們的體積怎樣計算?(多媒體出示長方體)有什么共同點(diǎn)?
學(xué)生:長方體的體積=長×寬×高,長×寬=底面積,V=sh;正方體的體積=棱長×棱長×棱長,棱長×棱長=底面積,V=sh;共同點(diǎn)都是底面積乘高。
2、猜測圓柱的體積與什么有關(guān)
師:拿出圓柱體,讓學(xué)生猜想圓柱體積與什么有關(guān)。
生1、圓柱的體積與圓柱的高有關(guān)。
生2、圓柱的體積與圓柱的底面積有關(guān)。
生3、圓柱的體積與圓柱的底面周長有關(guān)。
生4、圓柱的體積與圓柱的底面半徑有關(guān)。
3、推導(dǎo)圓柱體積公式
、賻: 同學(xué)們觀察圓柱的底面是一個圓,學(xué)習(xí)圓面積時,我們是把圓轉(zhuǎn)化成哪種圖形來求面積的?
生: 把圓轉(zhuǎn)化成近似長方形來求面積的。
、趲煟何覀円黄饋砘貞洶褕A轉(zhuǎn)化成近似長方形的過程,()
師: 你發(fā)現(xiàn)了什么?
生:我發(fā)現(xiàn)把圓平均分成的份數(shù)越多,拼成的圖形越接近長方形。
、蹘煟簣A柱可以看成多個圓片摞在一起,把圓剪拼成的每個近似長方形也摞在一起。我們就把圓柱轉(zhuǎn)化成我們以前學(xué)過的哪種立體圖形呢?
生:把圓柱轉(zhuǎn)化成近似的長方體。
、軒熡脠A柱體演示轉(zhuǎn)換過程,讓學(xué)生說怎樣轉(zhuǎn)換的。
生:把圓柱平均分成16份拼成一個近似的長方體。
、輲: 為了讓大家看的更清楚,我們再演示一下這個轉(zhuǎn)化過程。
再次演示把圓柱等分16等份,拼成近似的長方體。
再出示32等份的圓柱體拼成的近似的長方體,讓學(xué)生觀察,發(fā)現(xiàn)了什么?
生:分成的份數(shù)越多,拼成的圖形越接近長方體。
、迬煟撼鍪緢A柱體和拼成的長方體,讓學(xué)生觀察,拼好的長方體與原來的圓柱比較,發(fā)現(xiàn)了什么?
學(xué)生分組討論,匯報:
生:長方體的高和圓柱的高相等。
生:長方體的底面積和圓柱的底面積相等。
⑦師:你是怎么想的?
生:剛才我們復(fù)習(xí)了把圓轉(zhuǎn)化成長方形,所以圓柱的底面積和長方體的底面積相等。
⑧師:再次用圓柱拼成近似長方體的過程,讓學(xué)生仔細(xì)觀察圓轉(zhuǎn)化成長方形后,面積相等。
生:長方體的長是圓柱底面周長的一半,寬是圓柱底面半徑
師:演示 長方體的體積=底面積×高
、釒煟耗敲磮A柱的體積等于什么呢?
生:圓柱的體積=底面積×高
、庀旅嫖覀冊僖黄鸹貞浺幌罗D(zhuǎn)化的過程,()
讓學(xué)生獨(dú)立填答案,匯報:
三、我們知道了圓柱的體積公式,下面我們就來解決一些實際問題。
《圓柱的體積》教案 篇2
教學(xué)目標(biāo):
1、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力
3、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計算圓柱的體積和容積。
教學(xué)重點(diǎn):
掌握圓柱體積的計算公式。
教學(xué)難點(diǎn):
圓柱體積的計算公式的推導(dǎo)。
教學(xué)準(zhǔn)備:主題圖、圓柱形物體
教學(xué)過程:
一、復(fù)習(xí):
1、長方體的體積公式是什么?
。ㄩL方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)
2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。
3、復(fù)習(xí)圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。
二、新課:
1、圓柱體積計算公式的推導(dǎo):
。1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形——課件演示)
。2)由于我們分的不夠細(xì),所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。
。ㄕn件演示將圓柱細(xì)分,拼成一個長方體)
。3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的'底面積,長方體的高就是圓柱的高。
(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=Sh)
2、教學(xué)補(bǔ)充例題:
(1)出示補(bǔ)充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?
(2)指名學(xué)生分別回答下面的問題:
、 這道題已知什么?求什么?
、 能不能根據(jù)公式直接計算?
、 計算之前要注意什么?
。ㄓ嬎銜r既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位)
。3)出示下面幾種解答方案,讓學(xué)生判斷哪個是正確的.
①V=Sh
50×2.1=105(立方厘米)
答:它的體積是105立方厘米。
②2.1米=210厘米
V=Sh
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
、50平方厘米=0.5平方米
V=Sh
0.5×2.1=1.05(立方米)
答:它的體積是1.05立方米。
、50平方厘米=0.005平方米
V=Sh
0.005×2.1=0.0105(立方米)
答:它的體積是0.0105立方米。
先讓學(xué)生思考,然后指名學(xué)生回答哪個是正確的解答,并比較一下哪一種解答更簡單.對不正確的第①、③種解答要說說錯在什么地方.
(4)做第20頁的“做一做”。
學(xué)生獨(dú)立做在練習(xí)本上,做完后集體訂正。
3、引導(dǎo)思考:如果已知圓柱底面半徑r和高h(yuǎn),圓柱體積的計算公式是怎樣的?(V=πr2h)
4、教學(xué)例6:
。1)出示例6,并讓學(xué)生思考:要知道杯子能不能裝下這袋牛奶,得先知道什么?(應(yīng)先知道杯子的容積)
(2)學(xué)生嘗試完成例6。
、 杯子的底面積:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)
② 杯子的容積:50.24×10=502.4(cm3)=502.4(ml)
5、比較一下補(bǔ)充例題、例6有哪些相同的地方和不同的地方?
。ㄏ嗤氖嵌家脠A柱的體積計算公式進(jìn)行計算;不同的是補(bǔ)充例題已給出底面積,可直接應(yīng)用公式計算;例6只知道底面直徑,要先求底面積,再求體積。)
三、鞏固練習(xí):
1、做第26頁的第1題:
2、練習(xí)五的第2題:
這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習(xí)題.要求學(xué)生審題后,知道要先求出底面積,再求圓柱的體積。
四、全課總結(jié):
《圓柱的體積》教案 篇3
教學(xué)內(nèi)容:
P19-20頁例5、例6及補(bǔ)充例題,完成做一做及練習(xí)三第1~4題。
教學(xué)目標(biāo):
1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計算圓柱的體積和容積。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
教學(xué)重點(diǎn):
掌握圓柱體積的計算公式。
教學(xué)難點(diǎn):
圓柱體積的計算公式的推導(dǎo)。
教學(xué)過程:
一、復(fù)習(xí)
1、長方體的體積公式是什么?正方體呢?(長方體的體積=長寬高,長方體和正方體體積的統(tǒng)一公式底面積高,即長方體的體積=底面積高)
2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的.底面、高、側(cè)面、表面各是什么,怎么求。(刪掉)
3、復(fù)習(xí)圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。
師小結(jié):圓的面積公式的推導(dǎo)是利用轉(zhuǎn)化的思想把一個曲面圖形轉(zhuǎn)化成以前學(xué)的長方形,今天我們學(xué)習(xí)圓柱體體積公式的推導(dǎo)也要運(yùn)用轉(zhuǎn)化的思想同學(xué)們猜猜會轉(zhuǎn)化成什么圖形?
二、新課
1、圓柱體積計算公式的推導(dǎo)。
。1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形課件演示)
。2)由于我們分的不夠細(xì),所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細(xì)分,拼成一個長方體)
反復(fù)播放這個過程,引導(dǎo)學(xué)生觀察思考,討論:在變化的過程中,什么變了什么沒變?
長方體和圓柱體的底面積和體積有怎樣的關(guān)系?
學(xué)生說演示過程,總結(jié)推倒公式。
。3)通過觀察,使學(xué)生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積高,所以圓柱的體積=底面積高,V=Sh)
《圓柱的體積》教案 篇4
教學(xué)內(nèi)容:
人教版小學(xué)數(shù)學(xué)六年級下冊《圓柱的體積》P25-26。
教學(xué)目標(biāo):
1.經(jīng)歷探究和推導(dǎo)圓柱的體積公式的過程。
2.知道并能記住圓柱的體積公式,并能運(yùn)用公式進(jìn)行計算。
3.在自主探究圓柱的體積公式的過程中,體驗、感悟數(shù)學(xué)規(guī)律的來龍去脈,知道長方體與圓柱體底面和高各部分間的對應(yīng)關(guān)系。發(fā)展學(xué)生的觀察能力和分析、綜合、歸納推理能力。
4.激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生體驗成功的快樂。
5.培養(yǎng)學(xué)生的轉(zhuǎn)化思想,滲透辯證法和極限的思想。
教學(xué)重點(diǎn):掌握和運(yùn)用圓柱體積計算公式
教學(xué)難點(diǎn):圓柱體積公式的推導(dǎo)過程
教具學(xué)具準(zhǔn)備:教學(xué)課件、圓柱體。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入
1.同學(xué)們想一想,我們已經(jīng)學(xué)習(xí)了哪些立體圖形的體積?怎樣計算長方體和正方體的體積?長方體的體積和正方體的體積的通用公式是什么呢?用字母怎樣表示?
2.回憶一下圓面積的計算公式是如何推導(dǎo)出來的?
(結(jié)合課件演示)這是一個圓,我們把它平均分割,再拼合就變成了一個近似的平行四邊形。我們還可以往下繼續(xù)分割,無限分割就變成了一個長方形。長方形的長相當(dāng)于圓周長的一半,可以用πR表示,長方形的`寬就當(dāng)于圓的半徑,用R表示。所以用周長的一半×半徑就可以求出圓的面積,所以推導(dǎo)出圓的面積公式是S=πR。
3.課件出示一個圓柱體
我們把圓轉(zhuǎn)化成了近似的長方形,同學(xué)們猜想一下圓柱可以轉(zhuǎn)化成什么圖形呢?
二、探索體驗
1.學(xué)生猜想可以把圓柱轉(zhuǎn)化成什么圖形?
2.課件演示:把圓柱體轉(zhuǎn)化成長方體
、偈窃鯓悠闯傻?
、谟^察是不是標(biāo)準(zhǔn)的長方體?
、垩菔32等份、64等份拼成的長方體,比較一下發(fā)現(xiàn)了什么?引出課題并板書。
3.借鑒圓的面積公式的推導(dǎo)過程試著推導(dǎo)圓柱的體積公式。
課件出示要求:
①拼成的長方體與原來的圓柱體比較什么變了?什么沒變?
②推導(dǎo)出圓柱體的體積公式。
學(xué)生結(jié)合老師提出的問題自己試著推導(dǎo)。
4.交流展示
小組討論,交流匯報。
生匯報師結(jié)合講解板書。
圓柱體積=底面積×高
‖ ‖ ‖
長方體體積=底面積×高
用字母公式怎樣表示呢? v、s、h各表示什么?
5.知道哪些條件可以求出圓柱的體積?
6.計算下面圓柱的體積。
、俚酌娣e24平方厘米,高12厘米
、诘酌姘霃2厘米,高5厘米
③直徑10厘米,高4厘米
④周長18.84厘米,高12厘米
三、課堂檢測
1.判斷
①圓柱體、長方體和正方體的體積都可以用底面積乘高的方法來計算。( )
、趫A柱的底面積擴(kuò)大3倍,體積也擴(kuò)大3倍。( )
、垡粋長方體與一個圓柱體底面積相等,高也相等,那么它們的體積也相等。( )
、軋A柱體的底面直徑和高可以相等。( )
、輧蓚圓柱體的底面積相等,體積也一定相等。( )
⑥一個圓柱形的水桶能裝水15升,我們就說水桶的體積是15立方分米。( )
2.聯(lián)系生活實際解決實際問題。
下面的這個杯子能不能裝下這袋奶?
。ū拥臄(shù)據(jù)從里面量得到直徑8cm,高10cm;牛奶498ml)
學(xué)生獨(dú)立思考回答后自己做在練習(xí)本上。
3.一個壓路機(jī)的前輪是圓柱形,輪寬2米,半徑1米,它的體積是多少立方米?
4.生活中的數(shù)學(xué)
一個用塑料薄膜蓋的蔬菜大棚,長15米,橫截面是一個半徑2米的半圓。
、俑采w在這個大棚上的塑料薄膜約有多少平方米?
、诖笈飪(nèi)的空間大約有多大?
獨(dú)立思考后小組討論,兩生板演。
四、全課總結(jié)
這節(jié)課你有什么收獲?
五、課后延伸
如果要測量圓柱形柱子的體積,測量哪些數(shù)據(jù)比較方便?試一試吧?
六、板書設(shè)計
圓柱體積= 底面積×高
長方體體積=底面積×高
《圓柱的體積》教案 篇5
設(shè)計說明
1.創(chuàng)設(shè)問題情境,激發(fā)學(xué)習(xí)興趣。
興趣是最好的老師。新課伊始,為學(xué)生創(chuàng)設(shè)“圓柱形橡皮泥的體積你會求嗎?”的問題情境,引導(dǎo)學(xué)生經(jīng)過思考、討論、交流,找到解決的方法。這樣的設(shè)計不僅自然滲透了圓柱(新問題)和長方體(已知)的知識聯(lián)系,還讓學(xué)生體會到可以有許多方法去解決生活中的實際問題,激發(fā)了學(xué)生的學(xué)習(xí)興趣和探究新知的欲望。
2.實踐操作,促進(jìn)知識遷移。
知識和經(jīng)驗的積累來源于大量的實踐活動。動手操作不但能使學(xué)生獲得感性的體驗,更能加深學(xué)生對知識的理解。本設(shè)計為學(xué)生創(chuàng)設(shè)動手操作的情境,使學(xué)生通過動手拼擺,充分感知圖形之間的關(guān)系,深刻理解圓柱的體積公式的合理性,充分認(rèn)識到圖形轉(zhuǎn)化過程中形變而質(zhì)不變的辯證關(guān)系,使學(xué)生在把舊知遷移、發(fā)展、轉(zhuǎn)化、構(gòu)建為新知的同時,動手操作、觀察及歸納能力也得到極大的提高。
課前準(zhǔn)備
教師準(zhǔn)備 圓柱的體積公式演示教具 多媒體課件
學(xué)生準(zhǔn)備 圓柱的體積公式演示學(xué)具
教學(xué)過程
第1課時 圓柱的體積(1)
⊙創(chuàng)設(shè)情境,導(dǎo)入新課
1.出示一塊圓柱形橡皮泥。
師:同學(xué)們,我們以前學(xué)過長方體和正方體體積的計算方法,現(xiàn)在我想知道這塊圓柱形橡皮泥的體積是多少,你有好的辦法嗎?
2.學(xué)生小組討論交流并匯報。
預(yù)設(shè)
生1:可以把這塊橡皮泥捏成長方體,利用長方體的體積公式來解決。
生2:可以把它放到量杯中,計算上升的水的體積。
3.引入新課。
解決生活中的問題有很多方法,需要我們?nèi)グl(fā)現(xiàn)、去探究。這節(jié)課我們就共同去探究圓柱體積的計算方法。
設(shè)計意圖:通過創(chuàng)設(shè)問題情境,引發(fā)學(xué)生思考,進(jìn)一步體會“轉(zhuǎn)化”思想。
⊙新知探究
1.利用知識的遷移,猜想圓柱體積的計算方法。
(1)提出猜想。
師:在剛才的問題中同學(xué)們提出可以將圓柱形橡皮泥捏成長方體,這時會有什么變化?
(形狀變了,體積沒變)
師:我們已經(jīng)掌握了長方體、正方體的體積計算方法,大家猜一猜:圓柱體積可能等于底面積×高嗎?
(2)學(xué)生討論、交流。
2.探究算法。
(1)提出問題:能不能借鑒把圓轉(zhuǎn)化為長方形的方法,把手中的圓柱形學(xué)具轉(zhuǎn)化為長方體?
(2)動手操作:把圓柱轉(zhuǎn)化為長方體。
(3)匯報交流:介紹自己的轉(zhuǎn)化方法。
(結(jié)合學(xué)生回答,課件演示轉(zhuǎn)化過程:先沿圓柱底面的半徑把圓柱平均分成16份,然后拼成一個近似的長方體)
(4)引導(dǎo)學(xué)生明確:由于我們分得不夠細(xì),所以看起來還不太像長方體;分得越多,拼成的立體圖形就越接近長方體。(課件演示將圓柱分成更多等份并拼成一個近似的長方體的過程)
(5)匯報發(fā)現(xiàn)。
、倨闯傻拈L方體的體積與圓柱的體積有什么關(guān)系?
、陂L方體的底面積、高分別與圓柱的底面積、高有什么關(guān)系?
、坶L方體的體積等于什么?圓柱呢?
3.總結(jié)公式。
(1)圓柱的體積怎樣計算?為什么?
(圓柱通過分割、拼組,可以轉(zhuǎn)化成近似的長方體。這個近似的`長方體的底面積與圓柱的底面積相等,高與圓柱的高相等。因為長方體的體積等于底面積乘高,所以圓柱的體積=底面積×高)
(2)說一說,怎樣用字母表示圓柱的體積公式?
(學(xué)生反饋:V=Sh)
(3)如果已知d、r、C和h,怎樣求圓柱的體積?
求圓柱體積的直接條件是S、h,間接條件是d、r和C,所以圓柱的體積公式也可以表示為V=πr2h、V=πh、V=πh。
(4)圓柱和長方體、正方體一樣,都是直柱體,你能總結(jié)出求它們的體積的統(tǒng)一計算方法嗎?
(直柱體的體積都等于底面積×高)
《圓柱的體積》教案 篇6
教學(xué)內(nèi)容:
北師大版教學(xué)六年級《圓柱的體積》
教學(xué)目標(biāo):
1、結(jié)合具體的情境和實踐活動,理解圓柱體體積的含義。
2、經(jīng)歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,并會解決一些簡單的實際問題。
3、培養(yǎng)學(xué)生初步的空間觀念和思維能力;
教學(xué)重點(diǎn):
理解和掌握圓柱的體積計算公式,會求圓柱的體積。
教學(xué)難點(diǎn):
理解圓柱體積計算公式的推導(dǎo)過程。
教具準(zhǔn)備:
圓柱體積演示教具。
教學(xué)過程:
一、舊知鋪墊
1、談話引入
最近我們認(rèn)識了圓柱和圓錐,還學(xué)會了計算圓柱的表面積,F(xiàn)在請看老師的這個圓柱形杯子和這個圓柱比較,誰大?這里所說的大小實際是指它們的什么?(生答)
2、提出問題:什么叫體積?我們學(xué)過那些圖形的體積?怎么算的?(生答師隨之板書)
這節(jié)課我們就來學(xué)習(xí)圓柱的體積。
二、自主探究,解決問題
(一)認(rèn)識圓柱體積的意義。
圓柱的體積到底是指什么?誰能舉例說呢?
。ǘ﹫A柱體積的計算公式的'推導(dǎo)。
1、我們學(xué)過長方體和正方體體積的計算,圓柱體的體積跟什么有關(guān)呢?你會有怎樣的猜想?(小組內(nèi)說說)
2、回憶圓面積的推導(dǎo)過程。
3、教具演示。
(1)取圓柱體模型。
(2)將圓柱體切成兩半。
。3)分別將兩半均分成若干小塊。
。4)動手拼成一個近似的長方體。
。ㄈw納公式。
。ò鍟簣A柱的體積=底面積高)
用字母表示:(板書:V=Sh)
三、鞏固新知
1、這個杯子的底面半徑為6厘米,高為16厘米,它的體積是多少?
審題。提問:你能獨(dú)立完成這題嗎?指名一同學(xué)板演,其余學(xué)生做在練習(xí)本上。
現(xiàn)在這個杯子裝了2/3的水,裝了多少水呢?
2、完成試一試
3、跳一跳:統(tǒng)一直柱體的體積的計算方法。
四、課堂總結(jié)、拓展延伸
這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?這個公式適合哪些圖形?他們有什么共同特點(diǎn)?
五、布置作業(yè)
練一練1-5題。
《圓柱的體積》教案 篇7
教學(xué)內(nèi)容:P19-20頁例5、例6及補(bǔ)充例題,完成“做一做”及練習(xí)三第1~4題。
教學(xué)目標(biāo):
1、通過用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式,能夠運(yùn)用公式正確地計算圓柱的體積和容積。
2、初步學(xué)會用轉(zhuǎn)化的數(shù)學(xué)思想和方法,解決實際問題的能力
滲透轉(zhuǎn)化思想,培養(yǎng)學(xué)生的自主探索意識。
教學(xué)重點(diǎn):掌握圓柱體積的計算公式。
教學(xué)難點(diǎn):圓柱體積的計算公式的.推導(dǎo)。
教學(xué)過程:
一、復(fù)習(xí)
1、長方體的體積公式是什么?(長方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)
2、拿出一個圓柱形物體,指名學(xué)生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。
3、復(fù)習(xí)圓面積計算公式的推導(dǎo)過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關(guān)系,再利用求長方形面積的計算公式導(dǎo)出求圓面積的計算公式。
二、新課
1、圓柱體積計算公式的推導(dǎo)。
。1)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導(dǎo)圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形。