《比例的意義》教案合集15篇
作為一名辛苦耕耘的教育工作者,時常需要用到教案,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學、恰當?shù)慕虒W方法。那么應當如何寫教案呢?下面是小編幫大家整理的《比例的意義》教案,僅供參考,歡迎大家閱讀。
《比例的意義》教案1
教學內(nèi)容:教材第42~44頁例4~例6,“練一練”,練習八第4—7題。
教學要求:
1.使學生認識反比例關系的意義,理解、掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例關系。
2.進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關聯(lián)的量成不成反比例的方法,培養(yǎng)學生判斷、推理的能力。
教學重點:認識反比例關系的意義。
教學難點:掌握成反比例量的變化規(guī)律及其特征。
教學過程:
一、復習舊知
1.正比例關系的意義是什么?怎樣用字母表示這種關系?
判斷兩種相關聯(lián)量成不成正比例的關鍵是什么?
2.下面哪兩種量成正比例關系?為什么?
(1)時間一定,行駛的速度和路程。
(2)數(shù)量一定,單價和總價。
3.說一說工作效率、工作時間和工作總量之間的數(shù)量關系。(學生回答后老師板書)在什么條件下,其中兩種量成正比例?
4.引入新課。
如果工作總量一定,工作效率和工作時間之間會怎樣變化呢,變化又有什么規(guī)律呢?這兩種量又成什么關系呢?這就是今天要學習的反比例關系。(板書課題)
二、教學新課
1.教學例4。
出示例4。讓學生計算,在課本上填表,并觀察思考能發(fā)現(xiàn)什么?指名口答,老師板書填表。讓學生按學習正比例的方法觀察表里內(nèi)容,相互之間討論,發(fā)現(xiàn)了什么。
指名學生口答討論的結果,得出:
(1)每天運的噸數(shù)和需要的天數(shù)是兩種相關聯(lián)的量,(板書:兩種相關聯(lián)的量)需要的天數(shù)隨著每天運的噸數(shù)的變化而變化。
(2)每天運的噸數(shù)縮小,需要的天數(shù)反而擴大,每天運的噸數(shù)擴大,需要的天數(shù)反而縮小。
(3)可以看出它們的變化規(guī)律是:每天運的噸數(shù)和天數(shù)的積總是一定的。(板書:每天運的噸數(shù)和天數(shù)的積一定)因為每天運的.噸數(shù)和天數(shù)的積都是240。提問:這里的240是什么數(shù)量?誰能說出這里的數(shù)量關系式?想一想,這個式子表示的是什么意思?(把上面的板書補充成:運的總噸數(shù)一定時,每天運的噸數(shù)和天數(shù)的積一定)
2.教學例5。
出示例5。
請同學們按照剛才學習例4的方法,自己學習例5,仔細想想你發(fā)現(xiàn)了些什么?學生觀察思考后,指名學生口答從表里發(fā)現(xiàn)了些什么,再提問:這兩種相關聯(lián)量變化的規(guī)律是什么?(板書:每袋重量和袋數(shù)的積一定)乘積8000是什么數(shù)量,這種數(shù)量關系用式子怎樣表示?[板書:每袋重量×袋數(shù)=糖果總重量(一定)]這個式子表示什么意思?(把上面板書補充成:糖果總重量一定時,每袋重量和袋數(shù)的積一定)
3.概括反比例的意義。
(1)綜合例4、例5的共同點。
提問:請你比較一下例4和例5,說一說,這兩個例題有什么共同的地方?
(2)概括反比例意義。
例4、例5里兩種相關聯(lián)的量,它們是什么關系的量呢?請同學們看第43頁倒數(shù)第二節(jié)。說明:像例4、例5里這樣兩種相關聯(lián)的量,一種量變化,另一種量也隨著變,變化時兩種量中相對應的兩個數(shù)的積一定。這樣兩種相關聯(lián)的量就叫做成反比例的量,它們之間的關系叫做反比例關系。迫問:兩種相關聯(lián)的量成不成反比例的關鍵是什么?(乘積是不是一定)提問:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?【板書:x×y=k(一定)】指出:這個式子表示兩種相關聯(lián)的量x和y,y隨著x的變化而變化,它們的乘積k是一定的。這時就說x和y成反比例關系。所以,兩種量成反比例關系,我們就用x×y=k(一定)來表示。
4.具體認識。
(1)提問:例4里有哪兩種相關聯(lián)的量?這兩種量成反比例關系嗎?為什么,
例5里的兩種量成反比例關系嗎?為什么?
(2)提問:看兩種相關聯(lián)的量成不成反比例,關鍵要看什么?
(3)做練習八第4題。
讓學生讀題思考。指名依次口答題里的問題。[結合板書;每天裝配的臺數(shù)×天數(shù)=一批計算機的總臺數(shù)(一定)]
(4)判斷。
現(xiàn)在回過來看開始寫的關系式:工作效率×工作時間=工作總量,當工作總量一定時,工作效率和工作時間成什么關系?為什么?指出:根據(jù)上面所說的反比例的意義,要知道兩個量成不成反比例關系,只要先看這兩種量是不是相關聯(lián)的量,再看兩種量變化時乘積是不是一定。如果兩種相關聯(lián)的量變化時乘積一定,它們就是成反比例的量,相互之間的關系就是反比例關系。
5.教學例6。
出示例6,學生讀題、思考。提問:怎樣判斷成不成反比例?哪位同學說說每本的頁數(shù)和裝訂的本數(shù)成不成反比例?為什么?【板書;每本的頁數(shù)×本數(shù)=紙的總頁數(shù)(一定)】請同學們看書上例6是怎樣判斷的,看看我們說得對不對。追問:判斷兩種量成不成反比例要怎樣想?其中關鍵是看什么?
三、鞏固練習
用剛才我們說的判斷方法來做幾道題。
1.做“練一練”第l題。
指名學生口答,說明理由。(可以寫出數(shù)量關系式看一看)
2.做“練一練”第2題。
指名口答,說說理由。思考時可以引導看數(shù)量關系式。
3.做練習八第5題。
讓學生先在書上判斷。指名口答,要求說出數(shù)量關系式判斷。
4.下題兩種相關聯(lián)量成不成反比例?為什么?
一根鐵絲,剪成每段2米,可以剪成5段;如果剪成4段,平均每段x米。
5.做練習八第6題。
各人先在書上寫各成什么比例。指名口答,要求說明理由。
6.做練習八第7題。
先讓學生默讀題目。提問:題里有怎樣的關系式?(板書:圓柱底面積×高=體積)指名學生口答.
四、課堂小結
這節(jié)課學習的是什么內(nèi)容?反比例關系的意義是什么?用怎樣的式子表示x和y這兩種相關聯(lián)的量成反比例?判斷兩種量是不是成反比例,關鍵是什么?
五、課堂作業(yè)
練習八第7題。
《比例的意義》教案2
第一課時
教學內(nèi)容:P32~34 比例的意義和基本性質(zhì)
教學目的:1、使同學理解比例的意義和基本性質(zhì),能正確判斷兩個比是否能組成比例。
2、通過引導探究、概括歸納、討論、合作學習,培養(yǎng)同學籠統(tǒng)概括能力。
3、使同學初步感知事物間是相互聯(lián)系、變化發(fā)展的。
教學重點;比例的意義和基本性質(zhì)
教學難點:應用比的基本性質(zhì)判段兩個數(shù)能否成比例,并正確的組成比例。
教學過程:
一、回顧舊知,復習鋪墊
1、請同學們回憶一下上學期我們學過的比的知識,誰能說說什么叫做比?并舉例說明什么是比的前項、后項和比值。
教師把同學舉的例子板書出來,并注明比的各局部的名稱。
2、我們知道了比的前后項相除所得的商叫做比值,你們會求比值嗎?教師板書出下面幾組比,讓同學求出它們的比值。
12:16 : 4.5:2.7 10:6
同學求出各比的.比值后,再提問:哪兩個比的比值相等?
(4.5:2.7的比值和10:6的比值相等。)
教師說明:因為這兩個比的比值相等,所以這兩個比也是相等的,我們把它們用等號連起來。(板書:4.5:2.7=10:6)像這樣表示兩個比相等的式子叫做什么呢?這就是這節(jié)課我們要學習的內(nèi)容。(板書課題:比例的意義)
二、引導探究,學習新知
1、教學比例的意義。
。1)出示P32例1。
每面國旗的長和寬的比分別是多少?指名分別算出一面國旗長和寬的比。
5: 2.4:1.6 60:40 15:10
每面國旗長和寬的比值有什么關系?(都相等)
5: =2.4:1.6 60:40=15:10 2.4:1.6=60:40
象這樣表示兩個比相等的式子叫做比例。
比例也可以寫成: = =
。2)我們也學過不同的兩個量也可以組成一個比,如:
一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米。列表如下:
時間(時) 2 5
路程(千米) 80 200
指名同學讀題。
教師:這道題涉和到時間和路程兩個量的關系,我們用表格把它們表示出來。表格的第一欄表示時間,單位“時”,第二欄表示路程,單位“千米”。 這輛汽車第一次2小時行駛多少千米?第二次5小時行駛多少千米?(邊問 邊填寫表格。)
“你能根據(jù)這個表,分別寫出第一、二次所行駛的路程和時間的比嗎?”教師根據(jù)同學的回答,板書:
第一次所行駛的路程和時間的比是80:2
第二次所行駛的路程和時間的比是200:5
讓同學算出這兩個比的比值。指名同學回答,教師板書:80:2=40,200:5=40。讓同學觀察這兩個比的比值。再提問:你們發(fā)現(xiàn)了什么?”(這兩個比的比值都是40,這兩個比相等。)
教師說明:因為這兩個比相等,所以可以把它們用等號連起來組成比例。(板書:80:2=200:5)像這樣表示兩個比相等的式子叫做比例。
指著比例式4.5:2.7=10:6提問: “誰能說說什么叫做比例?”引導同學觀察是表示兩個比相等。然后板書:表示兩個比相等的式子叫做比例。并讓同學齊讀一遍。
“從比例的意義我們可以知道,比例是由幾個比組成的?這兩個比必需具備什么條件?因此判斷兩個比能不能組成比例,關鍵是看什么?假如不能一眼看出兩個比是不是相等的,怎么辦?”
根據(jù)同學的回答,教師小結:通過上面的學習,我們知道了比例是由兩個相等的比組成的。在判斷兩個比能不能組成比例時,關鍵是看這兩個比是不是相等。假如不能一眼看出兩個比是不是相等,可以先分別把兩個比化簡以后再看。例如判斷10:12和35: 42這兩個比能不能組成比例,先要算出 10: 12= ,35: 42= ,所以 10:12=35:42。(以上舉例邊說邊板書。)
。3)比較“比”和“比例”兩個概念。
教師:上學期我們學習了“比”,現(xiàn)在又知道了“比例”的意義,那么“比”和“比例”有什么區(qū)別呢?
引導同學從意義上、項數(shù)上進行對比,最后教師歸納:比是表示兩個數(shù)相除,有兩項;比例是一個等式,表示兩個比相等,有四項。
。4)鞏固練習。
、儆檬謩菖袛嘞旅婵ㄆ系膬蓚比能不能組成比例。(能,就用張開拇指和食指表示;不能就用兩手的食指交叉表示。)
6:3和12:6 35:7和45:9 20:5和16:8 0.8:0.4和0.3:0.6
同學判斷后,指名說出判斷的根據(jù)。
、谧鯬33“做一做”。
讓同學看書,不抄題,直接把能組成比例的兩個比寫在練習本上,教師邊巡視邊批改,對做得不對的,讓他們說說是怎樣做的,看看自身做得對不對。
、劢o出2、3、4、6四個數(shù),讓同學組成不同的比例(不要求舉全)。
、躊36練習六的第1~2題。
對于能組成比例的四個數(shù),把能組成的比例寫出來。組成的比例只要能成立就可以。
第4小題,給出的四個數(shù)都是分數(shù),在寫比例式時,也要讓同學寫成分數(shù)形式。
《比例的意義》教案3
教學目標
1.使學生理解正、反比例的意義,能夠初步判斷兩種相關聯(lián)的量是否成比例,成什么比例.
2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.
3.滲透辯證唯物主義的觀點,進行運用變化觀點的啟蒙教育.
教學重難點
理解正反比例的意義,掌握正反比例的變化的規(guī)律.
教學過程
一、導入新課
(一)昨天老師買了一些蘋果,吃了一部分,你能想到什么?
。ǘ┙處熖釂
1.你為什么馬上能想到還剩多少呢?
2.是不是因為吃了的和剩下的是兩種相關聯(lián)的`量?
教師板書:兩種相關聯(lián)的量
。ㄈ┙處熣勗
在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯(lián)的量,總價和
數(shù)量也是兩種相關聯(lián)的量.你還能舉出一些例子嗎?
二、新授教學
(一)成正比例的量
例1.一列火車行駛的時間和所行的路程如下表:
時間(時):路程(千米)
1 :90
2 :180
3 :270
4 :360
5 :450
6 :540
7 :630
8 :720
1.寫出路程和時間的比并計算比值.
。1) 2表示什么?180呢?比值呢?
(2) 這個比值表示什么意義?
。3) 360比5可以嗎?為什么?
2.思考
。1)180千米對應的時間是多少?4小時對應的路程又是多少?
(2)在這一組題中上邊的一列數(shù)表示什么?下邊一列數(shù)表示什么?所求出的比值呢?
教師板書:時間、路程、速度
。3)速度是怎樣得到的?
教師板書:
。4)路程比時間得到了速度,速度也就是比值,比值相當于除法中的什么?
(5)在這組題中誰與誰是兩種相關聯(lián)的量?它們是如何相關聯(lián)的?舉例說明變化規(guī)律.
3.小結:有什么規(guī)律?
《比例的意義》教案4
教學內(nèi)容:
《反比例的意義》是六年制小學數(shù)學(北師版)第十二冊第二單元中的內(nèi)容。是在學過“正比例的意義”的基礎上,讓學生理解反比例的意義,并會判斷兩個量是否成反比例關系,加深對比例的理解。
學生分析:
在此之前,他們學習了正比例的意義,對“相關聯(lián)的量”、“成正比例的兩個量的變化規(guī)律”、“如何判斷兩個量是否成正比例”已經(jīng)有了認識,這為學習《反比例的意義》奠定了基礎。
教學目標:
1、知識與技能目標:使學生認識成反比例的量,理解反比例的意義,并學會判斷兩種相關聯(lián)的量是否成反比例。進一步培養(yǎng)學生觀察、學析、綜合和概括等能力。初步滲透函數(shù)思想。
2、過程與方法:為學生營造一個經(jīng)歷知識產(chǎn)生過程的情境。
3、情感與態(tài)度目標:使學生在自主探索與合作交流中體驗成功的樂趣,進一步增強學好數(shù)學的信心。
教學重點:理解反比例的意義。
教學難點:兩種相關聯(lián)的量的變化規(guī)律。
教學準備:學生準備:復習正比例關系,預習本節(jié)內(nèi)容。
教師準備:投影片3張,每張有例題一個。
教學過程設計:
一、談話引入,激發(fā)興趣。
1、談話:通過最近一段時間的觀察,我發(fā)現(xiàn)同學們越來越聰明了,會學數(shù)學了,這是因為同學們掌握了一定的數(shù)學學習的基本方法。下面請回想一下,我們是怎樣學習成正比例的量的?這節(jié)課我們用同樣的學習方法來研究比例的另外一個規(guī)律。
2、導入:在實際生活中,存在著許多相關聯(lián)的量,這些相關聯(lián)的量之間有的是成正比例關系,有的成其他形式的關系,讓我們一起來探究下面的問題。
二、創(chuàng)設情景引新:
(出示:十二個小方塊)
師:同學們,這十二個小方塊有幾種排法?
。ㄉ鸷螅蠋煱鍟卤淼呐帕羞^程)
每行個數(shù)1234612
行數(shù)1264321
師:請你觀察上表中每行個數(shù)與行數(shù)成正比例關系嗎?為什么?
生:……
師:這兩種量這間有關系嗎?有什么關系?這就是我們今天要研究的內(nèi)容。
。ǔ鍪菊n題:反比例的意義)
三、合作自學探知
1、學習例4。
。1)出示例4。
師:請同學們在小組內(nèi)互相交流,并圍繞這三個問題進行討論,再選出一位組員作代表進行匯報。
A、表中有哪兩種量?
B、怎樣隨著每小時加工的數(shù)量變化?
c、每兩個相對應的數(shù)的乘積各是多少?
學生討論……
生反饋:……
師:能不能舉出三個例子
生:1020=6002030=6003020=600……
師:這里的600是什么數(shù)量?你能說出這里的數(shù)量關系式嗎?
生:……
。郯鍟鍪荆好啃r加工數(shù)加工時間=零件總數(shù)(一定)]
2、自學例5:
。1)出示例5:
師:先請同學們按要求在書上填空,并說說是怎樣算的?根據(jù)什么?
生:……
師:模仿例4的方法,提出三個問題自己學習例5(出示三個問題)
生:……
3、討論準備題:
(1)請你根據(jù)例4的方法,四人小組內(nèi)說一說。
。2)請你舉例說明表中每行個數(shù)與行數(shù)是什么關系?為什么?
四、比較感知特征
綜合例4、例5、準備題的共同點師:比較一下例4、例5和準備題,請同學們在小組中討論一下,互相說說這三個題目有什么共同的特征?
生:……
五、引導概括意義
1、概括反比例意義。
學生在說相同點時老師邊引導邊說明。當學生說出三個特征后,教師板書這三個特征。
師:請同學們根據(jù)我們上節(jié)課學的正比例的意義猜測一下,符合三個特征的二個量叫做成什么量?相互這間成什么關系?
生:……
師:請閱讀課本第十六頁,同桌互相說說怎樣的兩個量成反比例關系。
學生互相練習……
師:哪位同學來告訴大家,兩種量如果成反比例必須符合哪三個條件?
生:……
師:例4、例5和準備題中的.兩種量成不成反比例?為什么?
生:……(學生回答后,老師及時糾正)
師:如果用x和y表示兩種相關聯(lián)的量,用k表示它們的乘積,那么上面這種關系式可以怎樣寫呢?
生:……[板書出示y=k(一定)]
2、教學例6。
。1)課件出示例6。
(學生讀題、思考)
師:怎樣判斷兩種量成不成反比例?
師:哪位同學說說,每天播種的公頃數(shù)和要用的天數(shù)是不是成反比例?為什么?
生:因為每天播種的公頃數(shù)要用的天數(shù)=播種的總公頃數(shù)(一定),所以每天播種的公頃數(shù)和要用的天數(shù)是成反比例的量。
六、小結:這節(jié)課同學們學到了哪些知識?運用了哪些學習方法?還有哪些不懂的問題?
[案例分析]:
通過聯(lián)系生活實際,學習成反比例的量,體會數(shù)學與生活的緊密聯(lián)系。不對研究的過程做詳細的引導和說明,只提供研究的素材和數(shù)據(jù),出示關鍵性的結論,充分發(fā)揮學生的主動性,以體現(xiàn)自主探究、合作交流的學習過程,獲得學習成功的體驗。通過引導學生觀察、分析、比較、歸納,形成良好的思維習慣和思維品質(zhì)。同時加深學生對數(shù)量關系的認識,滲透函數(shù)思想,為中學的數(shù)學學習做好知識準備。學習方式的轉(zhuǎn)變是新課改的顯著特征,就是把學習過程中的分析、發(fā)現(xiàn)、探究、創(chuàng)新等認識活動凸顯出來。在設計《反比例的意義》時,根據(jù)學生的知識水平,對教學內(nèi)容進行處理,克服教材的局限性,最大限度地拓寬探究學習的空間,提供自主學習的機會。
《比例的意義》教案5
教學目標
1.使學生理解反比例的意義,掌握成反比例的變化規(guī)律,并能初步運用,反比例的意義(參考教案二)。
2.能正確判斷成正反比例的量,為解答正反比例應用題打下基礎。
教學重點和難點
理解反比例的意義,掌握兩種相關聯(lián)的量變化規(guī)律。
教學過程設計
(一)復習準備
1.(出示幻燈)
一種練習本的數(shù)量和總頁數(shù)如下表:
師:請回答下列問題。
(1)表中哪個量是固定不變的量?
(2)哪兩種量是相關聯(lián)的量?它們的變化規(guī)律是怎樣的?
(3)表內(nèi)相關聯(lián)的兩種量成正比例嗎?為什么?
2.填空。(小黑板(一))
兩種相關聯(lián)的量,一種量變化另一種量也隨著變化,如果這兩種量中________,這兩種量叫做成________的量,它們的關系叫做________關系。
3.判斷下面各題中兩種量是否成正比例。
(1)文具盒的單價一定,買文具盒的個數(shù)和總價( )。
(2)水稻產(chǎn)量一定,水稻的種植面積和總產(chǎn)量( )。
(3)一堆貨物一定,運出的和剩下的( )。
(4)汽車行駛的`速度一定,行駛的時間和路程( )。
(5)比值一定,比的前項和后項( )。
可選其中一、二題,說一說為什么?
師:通過剛才的復習,我們對正比例的意義理解得很好。你們想一想,有正比例就一定有反比例。什么時候成反比例呢?今天我們就學習反比例的意義。(板書課題:反比例的意義)
(二)學習新課
1.出示例4。(小黑板(二))
例4 華豐機械廠加工一批零件,每小時加工的數(shù)量和加工的時間如下表:
(1)分析表,回答下列問題。(幻燈出示)
①表中有哪種量?
、趦煞N相關聯(lián)的量是如何變化的?
、勰隳苷f出它們的關系式嗎?
、芟鄬拿績蓚數(shù)的乘積各是多少?
、菽姆N量是固定不變的?
師:請同學們打開書自學,然后分組討論以上問題。(老師巡視、指導。)
(2)同學們發(fā)言。
《比例的意義》教案6
教學內(nèi)容:教科書第9—10頁比例的意義和基本性質(zhì).練習四的第1—3題。
教學目的:使學生理解比例的意義和基本性質(zhì)。
教學過程():
一、教學比例的意義
1.復習。
(1)教師:請同學們回憶一下上學期我們學過的比的知識.誰能說說什么叫做比?并舉例說明什么是比的前項、后項和比值。教師把學生舉的例子板書出來,并注明比的各部分的名稱。
(2)教師:我們知道了比的前后項相除所得的商叫做比值,你們會求比值嗎?
教師板書出下面幾組比,讓學生求出它們的比值。
12:16 :1 4·5:2.7 10:6
學生求出各比的比值后,再提
“請同學們觀察一下,哪兩個比的比值相等?”(4.5:2.7的比值和10:6的比值相等。)
教師說明:因為這兩個比的比值相等,所以這兩個比也是相等的,我們把它們用等號連起來。(板書:4.5:2.7=10:6)像這樣表示兩個比相等的式子叫做什么呢?
這就是這節(jié)課我們要學習的內(nèi)容。(板書課題:比例的意義)
2.教學比例的意義。
(1)出示例1:“一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米。”指名學生讀題。
教師:這道題涉及到時間和路程兩個量的關系,我們用表格把它們表示出來。表格的第一欄表示時間,單位“時”,第二欄表示路程,單位“千米”。這輛汽車第一次2小時行駛多少千米?第二次5小時行駛多少千米?(邊問邊填寫表格。)
“你能根據(jù)這個表,分別寫出第一、二次所行駛的路程和時間的比嗎?”教師根據(jù)學生的回答。
板書:第一次所行駛的路程和時間的比是80:2
第二次所行駛的路程和時間的比是200:5
然后讓學生算出這兩個比的比值。指名學生回答,教師板書:80:2=40, 200:5=40。讓學生觀察這兩個比的比值。再提問:
“你們發(fā)現(xiàn)了什么?”(這兩個比的比值都是40。)
“所以這兩個比怎么樣?”(這兩個比相等。)
教師說明:因為這兩個比相等,所以可以把它們用等號連起來。(板書:80:2=200:5或 = )像這樣(指著這個式子和復習題的式子4. 5:2.7=10:6)表示兩個比相等的式子叫做比例。
指著比例式80:2=200:5,提問:
“誰能說說什么叫做比例?”引導學生觀察是表示兩個比相等。然后板書:表示兩個比相等的式子叫做比例。并讓學生齊讀一遍。
“從比例的意義我們可以知道.比例是由幾個比組成的?這兩個比必須具備什么條件:因此判斷兩個比能不能組成比例,關鍵是看什么?如果不能一眼看出兩個比是不是相等的,怎么辦?”
根據(jù)學生的回答,教師小結:通過上面的學習,我們知道了比例是由兩個相等的 比組成的。在判斷兩個比能不能組成比例時,關鍵是看這兩個比是不是相等。如果不能一限看出兩個比是不是相等?可以先分別把兩個比化簡以后再看。例如判斷10;12和35:1:這兩個比能不能組成比例,先要算出10:12= ,35:42= ,所以10:12=35:42:(以上舉例邊說邊板書。)
(2)比較“比”和“比例”兩個概念。
教師:上學期我們學習了“比”,現(xiàn)在又知道了“比例”的意義,那么“比”和“比例”有什么區(qū)別呢?
引導學生從意義上、項數(shù)上進行對比,最后教師歸納:比是表示兩個數(shù)相除,有兩項;比例是一個等式,表示兩個比相等,有四項。
(3)鞏固練習。
、儆檬謩菖袛嘞旅婵ㄆ系膬蓚比能不能組成比例。(能,就用張開拇指和食指表 示;不能就用兩手的食指交叉表示。)
6:3和12:6 35:7和45:9
20:5和.16:8 0.8:0.4和 : :
學生判斷后,指名說出判斷的根據(jù)。
、谧龅10頁的“做一做”。
讓學生看書,不抄題,直接把能組成比例的兩個比寫在練習本上,教師邊巡視邊批改,對做得不對的,讓他們說說是怎樣做的,看看自己做得對不對。
③給出2、3、4、6四個數(shù),讓學生組成不同的比例(不要求舉全)。
、茏鼍毩曀牡牡3題。
對于能組成比例的四個數(shù),把能組成的比例寫出來:組成的比例只要能成立就可以。
第4小題,給出的四個數(shù)都是分數(shù),在寫比例式時,也要讓學生寫成分數(shù)形式。
二、教學比例的`基本性質(zhì)
1.教學比例各部分的名稱。
教師:同學們能正確地判斷兩個比能不能組成比例了,那么比例各部分的名稱是什么?請同學們翻開教科書第10頁看第6行到9行?纯词裁唇斜壤捻棥⑼忭、內(nèi)項。(學生看書時,教師板書:80:2=200:5)
指名讓學生指出板書出的比例的外項、內(nèi)項。隨著學生的回答教師接著板書如下:
80 :2=:200 :5
內(nèi)項
外項
2.教學比例的基本性質(zhì)。
教師:我們知道了比例各部分的名稱,那么比例有什么性質(zhì)呢?現(xiàn)在我們就來研究。(在比例的意義后面板書:比例的基本性質(zhì))請同學們分別計算出這個比例中兩個內(nèi)項的積和兩個外項的積。教師板書:
兩個外項的積是80×5=400
兩個內(nèi)項的積是2×200=400
“你發(fā)現(xiàn)了什么?”(兩個外項的積等于兩個內(nèi)項的積。)板書:80×5=2×20“是不是所有的比例式都是這樣的呢?”讓學生分組計算前面判斷過的比例式。
“通過計算,大家發(fā)現(xiàn)所有的比例式都有這個共同的規(guī)律。誰能用一句話把這個規(guī)律說出來?”可多讓一些學生說,說得不完整也沒關系.讓后說的同學在先說的同學的基礎上說得更完整。
最后教師歸納并板書出:在比例里.兩個外項的積等于兩個內(nèi)項的積。并說明這叫做比例的基本性質(zhì)。
“如果把比例寫成分數(shù)形式,比例的基本性質(zhì)又是怎樣的呢?”(指著80;2=200:5)教師邊問邊改寫成: =
“這個比例的外項是哪兩個數(shù)呢?內(nèi)項呢?”
“因為兩個內(nèi)項的積等于兩個外項的積,所以,當比例寫成分數(shù)的形式.等號兩 端的分子和分母分別交叉相乘的積怎么樣?”邊問邊畫出交叉線,如: =
學生回答后,教師強調(diào):如果把比例寫成分數(shù)形式,比例的基本性質(zhì)就是等號兩端分子和分母分別交叉相乘,積相等。板書: = 80×5=2×200
3.鞏固練習。
教師:前面要判斷兩個比是不是成比例,我們是通過計算它們的比值來判斷的。學過比例的基本性質(zhì)以后,也可以應用比例的基本性質(zhì)來判斷兩個比能不能成比例。
(1)應用比例的基本性質(zhì)判斷3:4和6:8能不能組成比例。
教師:我們可以這樣想:先假設3:4和6:8可以組成比例。再算出兩個外項的積(板書:兩個外項的積:3×8=:1)和兩個內(nèi)項的積(板書:兩個內(nèi)項的積:4×6=24)。因為3×8=4×6(板書出來).也就是說兩個外項的積等于兩個內(nèi)項的積,所以
3:4和6:8可以組成比例。(邊說邊板書:3:4=6:8)
(2)做第11頁“做一做”的第1題。
三、小結
教師:通過這節(jié)課,我們學到了什么知識?什么是比例?比例的基本性質(zhì)是什么?應用比例的基本性質(zhì)可以做什么?
四、作業(yè)
練習四的第2題。
《比例的意義》教案7
素質(zhì)教育目標
。ㄒ唬┲R教學點
1.使學生理解正比例的意義。
2.能根據(jù)正比例的意義判斷兩種量是不是成正比例。
。ǘ┠芰τ柧汓c
1.培養(yǎng)學生用發(fā)展變化的觀點來分析問題的能力。
2.培養(yǎng)學生抽象概括能力和分析判斷能力。
(三)德育滲透點
1.通過引導學生用發(fā)展變化的觀點來分析問題,使學生進一步受到辯證唯物主義觀點的啟蒙教育。
2.進一步滲透函數(shù)思想。
教學重點:使學生理解正比例的意義。
教學難點:引導學生通過觀察、思考發(fā)現(xiàn)兩種相關聯(lián)的量的變化規(guī)律,即它們相對應的數(shù)的比值一定,從而概括出正比例關系的概念。
教具學具準備:投影儀、投影片、小黑板。
教學步驟
一、鋪墊孕伏
用投影逐一出示下列題目,請同學回答:
1.已知路程和時間,怎樣求速度?
2.已知總價和數(shù)量,怎樣求單價?
3.已知工作總量和工作時間,怎樣求工作效率?
二、探究新知
1.導入新課:這些都是我們已經(jīng)學過的常見的數(shù)量關系。這節(jié)課,我們繼續(xù)研究這些數(shù)量關系中的一些特征。
2.教學例1
。1)投影出示:一列火車1小時行駛60千米,2小時行駛120千米,3小時行駛180千米,4小時行駛240千米,5小時行駛300千米,6小時行駛360千米,7小時行駛420千米,8小時行駛480千米……
。2)出示下表,并根據(jù)上述內(nèi)容填表。
一列火車行駛的時間和所行的路程如下表
。3)邊填表邊思考:在填表過程中,你發(fā)現(xiàn)了什么?
學生交流時,使之明確。
、俦碇杏袝r間和路程兩種量。
、诋敃r間是1小時,路程則是60千米,時間是2小時,路程是120千米……時間變化,路程也隨著變化,時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。
教師點撥:
像這樣,時間變化,路程也隨著變化,我們就說,時間和路程是兩種相關聯(lián)的量。(板書:兩種相關聯(lián)的量)
、廴绻麑W生沒有問題,教師提示:請每位同學任選一組相對應的數(shù)據(jù),計算出路程與時間的比的比值。
教師問:根據(jù)計算,你發(fā)現(xiàn)了什么?
引導學生得出:相對應的兩個數(shù)的比值都是60或都一樣,固定不變等。
教師指出:相對應的兩個數(shù)的比的比值都一樣或固定不變,在數(shù)學上叫做“一定”。(板書:相對應的兩個數(shù)的比值一定)
、鼙戎60,實際就是火車的速度。用式子表示它們的關系就是:
(4)教師小結:
剛才同學們通過填表、交流,我們知道時間和路程是兩種相關聯(lián)的量,路程隨著時間的變化而變化。時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。它們擴大、縮小的規(guī)律是:路程和時間的比的`比值總是一定的。
3.教學例2
(1)出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數(shù)和總價的表。
。2)觀察上表,引導學生明確:
①表中有數(shù)量(米數(shù))和總價這兩種量,它們是兩種相關聯(lián)的量。
②總價隨米數(shù)的變化情況是:
米數(shù)擴大,總價隨著擴大;米數(shù)縮小,總價也隨著縮小。
、巯鄬目們r和米數(shù)的比的比值是一定的。
④比值3.1,實際就是這種花布的單價。用式子表示它們的關系就是:
。3)師生小結:通過剛才的觀察和分析,我們知道總價和米數(shù)也是兩種什么樣的量?(兩種相關聯(lián)的量)為什么?(總價隨著米數(shù)的變化而變化。)怎樣變化?(米數(shù)擴大,總價隨著擴大;米數(shù)縮小,總價隨著縮小。)它們擴大、縮小的規(guī)律是怎樣的?(總價和米數(shù)的比的比值總是一定的。)
4.抽象概括正比例的意義。
。1)比較例1、例2,思考并討論,這兩個例子有什么共同點?
。2)學生初步交流時引導學生明確:
、倮1中有路程和時間兩種量;例2中有米數(shù)和總價兩種量。即它們都有兩種相關聯(lián)的量;
、诶1中時間變化,路程就隨著變化;例2中米數(shù)變化,總價也隨著變化。
教師點撥:像這樣,我們就可以說:一種量變化,另一種量也隨著變化。(板書)
、劾1中路程與時間的比的比值一定:例2中總價與米數(shù)的比的比值一定。概括地講就是:兩種量中相對應的兩個數(shù)的比值(也就是商)一定。
。▽W生答不出來時,教師引導、點撥,并補充板書:兩種量中)
。3)引導學生抽象概括出兩例的共同點:
兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,這兩種量中相對應的兩個數(shù)的比值(也就是商)一定。
(4)教師指明:兩種相關聯(lián)的量,一種變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。
(補充板書:如果這成正比例的量正比例關系)
這就是我們這節(jié)課學習的“正比例的意義”(板書課題)
。5)看書19、20頁的內(nèi)容,進一步理解正比例的意義。
。6)教師說明:在例1中,路程隨著時間的變化而變化,它們的比的比值(速度)保持一定,所以路程和時間是成正比例的量。
。7)想一想:在例2中,有哪兩種相關聯(lián)的量?它們是不是成正比例的量?為什么?
。8)教師提出:如果字母x和y表示兩種相關聯(lián)的量,用k表示它們的比值(一定),正比例關系怎樣用字母表示出來?
。9)教師提出:根據(jù)正比例的意義以及表示正比例關系的式子想一想:構成正比例關系的兩種量必須具備哪些條件?
5.教學例3
(1)出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?
。2)根據(jù)正比例的意義,由學生討論解答。
(3)匯報判斷結果,并說明判斷的根據(jù)。
教師板書:
面粉的總重量和袋數(shù)是兩種相關聯(lián)的量。
所以面粉的總重量和袋數(shù)成正比例。
6.反饋練習
讓學生試做第21頁的做一做,并訂正。
三、鞏固發(fā)展
1.完成練習三第1題。
先想一想成正比例的量要滿足哪幾個條件?再算出各表相對應數(shù)的比的比值。如果相等,列關系式判斷。第(3)題不成比例,訂正時要學生說明為什么?
2.完成練習三第2題的(1)-(9)
先讓學生自己判斷,再訂正。
四、全課小結(師生共同進行)
通過這節(jié)課的學習,你都知道了什么?怎樣判斷兩種量是否成正比例?
《比例的意義》教案8
教學目標:
1、理解比例的意義,認識比例各部分名稱,能通過觀察、猜想、驗證等方法得出分數(shù)的基本性質(zhì)。
2、能根據(jù)比例的意義和基本性質(zhì),正確判斷兩個比能否組成比例。
3、培養(yǎng)學生猜想與驗證、觀察與概括的能力。
4、讓學生經(jīng)經(jīng)歷探究的過程,體驗成功的快樂,收獲數(shù)學學習的興趣和信心。
教學重點:理解比例的意義和基本性質(zhì),能正確判斷兩個比能否組成比例。
教學難點:自主探究比例的基本性質(zhì)。
教學準備:投影片、練習紙
三案設計:
學案
一、自學質(zhì)疑
[探究任務一] 比例的意義
1、投影出示幾組比,讓學生寫出各組的比值,
二、比例的基本性質(zhì)
教案
一、回顧舊知、孕伏新知:
1、談話:同學們,我們已經(jīng)學過了比的許多知識,說說你已經(jīng)知道了比的哪些知識?
(生答:比的意義、各部分名稱、基本性質(zhì)等。)
還記得怎樣求比值嗎?能很快算出下面每組中兩個比的比值嗎?
2、 師板書題目:
。1)4:5 20:25 (2)0.6:0.3 1.8:0.9
(3)1/4: 5/8 3:7.5 (4)3:8 9:27
[評析:開門見山,從學生已有的知識經(jīng)驗入手,方便快捷,循序漸進,為新課做好準備。因為這些題目還要用到,所以不惜費時板書——有效的呈現(xiàn)方式]
二、絲絲入扣,深挖比例的意義
。ㄒ唬┱J識意義
1、 指名口答每組中兩個比的比值,在比例下方寫上比值。
師問:你們有什么發(fā)現(xiàn)嗎?(三組比值相等,一組不等)
2、是啊,這種現(xiàn)象早就引起了人們的重視和研究。人們把比值相等的兩個比用等號連起來,寫成一種新的式子,如:4:5=20:25
師:最后一組能用等號連接嗎?為什么?
數(shù)學中規(guī)定,像這樣的一些式子就叫做比例,今天這節(jié)課我們就一起來研究比例(板書:比例)
[評析:通過口算求比值,不經(jīng)意間學生就有了發(fā)現(xiàn),有三組式子比值相等,一組不等,如行云流水般引出比例。有效的課堂教學,就需要像這樣做好新舊知識的完美銜接。]
3、同學們想研究比例的哪些內(nèi)容呢?
(生答:想研究比例的意義,學比例有什么用?比例有什么特點……)
4、那好,我們就先來研究比例的意義,到底什么是比例呢?觀察黑板上這些式子,你能說出什么叫比例嗎?
。ǜ鶕(jù)學生的回答,教師抓住關鍵點板書:兩個比 比值相等)
同學們說的比例的意義都正確,不過數(shù)學中還可以說得更簡潔些。
板演:表示兩個比相等的式子叫做比例。
學生議一議,明確:有兩個比,且比值相等,就能組成比例;反之,如果是比例,就一定有兩個比,且比值相等。
5、質(zhì)疑:有三個比,他們的比值相等,能組成比例嗎?
[評析:比例的意義其實是一種規(guī)定,學生只要搞清它“是什么”,而不需要知道“為什么”。本環(huán)節(jié)讓學生先觀察,再用自己的話說說什么是比例,學生都能說出比例意義的關鍵所在——兩個比且比值相等,教師再精簡語句,得出概念,注重了對學生語言概括能力的培養(yǎng)。在總結得出概念之后,教師沒有嘎然而止,而是繼續(xù)引導學生議一議,從正反兩方面進一步認識比例,加深了學生對比例的內(nèi)涵的理解。讓學生像一個數(shù)學家一樣真正經(jīng)歷知識探索和形成的全過程,無時無刻不享受成功的快樂!]
。ǘ┚毩
1、投影出示例1,根據(jù)下表,先分別寫出兩次買練習本的錢數(shù)和本數(shù)的比,再判斷這兩個比能否組成比例。
。1)學生獨立完成。
。2)集體交流,明確:根據(jù)比例的意義可以判斷兩個比能否組成比例。
2、完成練習紙第1題。
一輛汽車上午4小時行駛了200千米,下午3小時行駛了150千米。
(1)分別寫出上、下午行駛的路程和時間的比,這兩個比能組成比例嗎?為什么?
(2)分別寫出上、下午行駛的路程的比和時間的比,這兩個比能組成比例嗎?為什么?
[評析:這兩道練習題既幫助學生鞏固了比例的意義,學會根據(jù)比例的意義判斷兩個比能否組成比例;又讓學生進一步體驗到比例在生活中的應用。這一環(huán)節(jié),一學生對于“為什么”設計到了正反比例的知識,教師也不失時機予以評價,不但使該生興致勃勃,也引得其他學生投來艷羨的目光,生成地精彩!]
3、剛才我們先寫出了比,然后再寫出了比例,你覺得比和比例一樣嗎?有什么區(qū)別?
。ㄒ龑W生歸納出:比例由兩個比組成,有四個數(shù);比是一個比,有兩個數(shù))
4、認識比例各部分的名稱
。1)板書出示: 4 : 5
前項 后項
。2)板書出示:4 : 5 = 20 : 25
。3)如果把比例寫成分數(shù)的形式,你能指出它的內(nèi)、外項嗎?
課件出示:4/5=20/25
[評析:由練習題中先寫比、再寫比例,自然引出比和比例的的區(qū)別,再由比的各部分名稱到比例的各部分名稱,環(huán)環(huán)相扣、自然流暢、一氣呵成。]
5、小結、過渡:
剛才我們已經(jīng)研究了比例的意義及其各部分名稱,也知道了比例在生活中有很多的應用,接下來我們一起來研究比例是否也有什么規(guī)律或者性質(zhì),大家有興趣嗎?
三、探究比例的基本性質(zhì)
1、投影出示:
你能運用3、5、10、6這四個數(shù),組成幾個等式嗎?(等號兩邊各兩個數(shù))
2、 獨立思考,并在作業(yè)本上寫一寫。
學生組成的等式可能有:10÷5=6÷3
或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根據(jù)學生回答,師相機引導并板書: 3×10=5×6 3:5=6:10
3:6=5:10
5:3=10:6
6: 3=10:5……
3、 引導發(fā)現(xiàn)規(guī)律
。1)還有不同的乘法算式嗎?(沒有,交換因數(shù)的位置還是一樣)
乘法算式只能寫一個,比例卻寫了這么多,這些比例一樣嗎?(不一樣,因為比值各不相同)
。2)那么,這些比例式中,有沒有什么相同的特點或規(guī)律呢?仔細觀察,你能發(fā)現(xiàn)比例的性質(zhì)或規(guī)律嗎?
。3)學生先獨立思考,再小組交流,探究規(guī)律。
。ò鍟簝蓚外項的.積等于兩個內(nèi)項的積。)
[評析:“運用這四個數(shù),你能組成幾個等式”,不同的學生寫出的算式各不相同,也會有多少之別,這里充分發(fā)揮交流的作用,讓每一個學生的思考都變成有用的教學資源。考慮到直接探究比例的基本性質(zhì)學生會有困難,教師作了適當?shù)囊龑,通過乘法算式和比例式的橫向聯(lián)系,讓學生在變中尋不變,從而探究出性質(zhì)。]
4、驗證猜想:
師:這是你的猜想,有了猜想還必須驗證。
。1)請看黑板上這幾個比例的內(nèi)項的積與外項的積是不是相等?(學生進行驗證,紛紛表示內(nèi)項積等于外項積)
。2)學生任意寫一個比例并驗證。師巡視指導。
師:有一位同學也寫了一個比例,他認為這個比例的內(nèi)項積與外項積是不相等的,大家看看是什么原因?
板書:1/2 ∶1/8 = 2∶ 8
眾生沉思片刻,紛紛發(fā)現(xiàn)等式不成立。
生:1/2∶1/8 = 4,而 2∶8 =1/4,這兩個比不能組成比例。
師:看來剛才發(fā)現(xiàn)的規(guī)律前要加一個條件——在比例里(板書),這個規(guī)律叫做比例的基本性質(zhì)。
[評析:給學生提供大量的事例,要求他們多方面驗證,從個別推廣到一般,讓學生學會科學地、實事求是地研究問題。]
5、思考4/5=20/25是那些數(shù)的乘積相等。課件顯示:交叉相乘。
6、小結:剛才我們是怎樣發(fā)現(xiàn)比例的基本性質(zhì)的?(寫了一些比例式,觀察比較,發(fā)現(xiàn)規(guī)律,再驗證)
[及時總結評價,不但可以幫助學生理清知識脈絡,而且可以讓他們感受創(chuàng)造的快樂,樹立學習的信心。尤其是教師的評價:科學家也是這樣研究問題的!更給了學生無上的榮耀!]
四、反饋提升
完成練習紙2、3、4
附練習紙:2、下面每組中的兩個比能組成比例嗎?把組成的比例寫下來,并說說判斷的理由。
14 :21 和 6 :9 1.4 :2 和 5 :10
讓學生明確可以通過比例的意義和基本性質(zhì)兩個途徑判斷兩個比能否組成比例。
3、判斷下面哪一個比能與 1/5:4組成比例。
、5:4 ②20:1
、1:20 ④5:1/4
4、在( )里填上合適的數(shù)。
、1.5:3=( ):4
12:( )=( ):5
[評析:習題的安排旨在對比例的意義和基本性質(zhì)進行進一步的鞏固和應用,第4題中第②題屬于開放題,答案不唯一,意在進一步讓學生體驗和感悟數(shù)學的“變”與“不變”的美妙與統(tǒng)一。]
五、課后留白
同一時間、同一地點,人高1.5米,影長2米;樹高3米,影長4米。
。1)人高和影長的比是( )
樹高和影長的比是( )
(2)人高和樹高的比是( )
人影長和樹影長的比是( )
你有什么發(fā)現(xiàn)?
為什么同一時間、同一地點兩個不同物體高度與其影長的比可以組成比例?請大家課后查找有關資料。
[設計意圖:數(shù)學服務于生活,在生活中能更好地檢驗數(shù)學學習的成色!“帶著問題離開教室”是新課程的理念,沒有完美的課堂,缺憾不失為一種美!]
六、全課總結:這節(jié)課你有什么收獲?
(最后的機會仍然給學生,學生通過清晰的板書總結的很到位)
《比例的意義》教案9
一、教學目標
知識與技能目標:在具體情境中,理解比例的意義和基本性質(zhì),會應用比例的意義和基本性質(zhì)正確判斷兩個比能否組成比例。
過程與方法目標:在探索比例的意義和基本性質(zhì)的過程中發(fā)展推理能力。
態(tài)度價值觀目標:通過自主學習,經(jīng)歷探究的過程,體驗成功的快樂。
二、教學重點難點
重點: 理解比例的意義和基本性質(zhì)。
難點:判斷兩個比是否成比例。
三、教學過程設計
(一)創(chuàng)設情境,提出問題
1. 復習導入:
(1)什么叫做比?
兩個數(shù)相除又叫做兩個數(shù)的比。
(2)什么叫做比值?
比的前項除以比的后項所得商,叫做比值。
(3)求下面各比的比值:
12:16= 4、5:2、7= 10:6=
談話:今天我們要學的知識也和比有著密切的關系。
2、創(chuàng)設情境,提出問題。
談話:同學們,你們知道青島都有哪些產(chǎn)品非常有名?(學生根據(jù)自己的了解回答)青島啤酒享譽世界各地,這節(jié)課,我們將一起去探索啤酒生產(chǎn)中的數(shù)學
出示課件:這是一輛貨車正在運輸啤酒的主要生產(chǎn)原料大麥芽。
這是它兩天的運輸情況:
一輛貨車運輸大麥芽情況
第一天 第二天
運輸次數(shù) 2 4
運輸量(噸) 16 32
根據(jù)這個表格,讓學生提出有關比的數(shù)學問題。同桌倆人,一個提問題,一個將問題的答案寫在本上,看哪對同桌合作得最好,提出的`問題最多。
談話:誰來交流?跟大家說一下你的問題是什么?
學生可能出現(xiàn)以下的問題:
貨車第一天的運輸量與運輸次數(shù)的比是多少? (16 : 2)
貨車第二天的運輸量與運輸次數(shù)的比是多少?(32 :4)
貨車第二天的運輸量與第一天運輸量的比是多少?(32 :16)
。◣煾鶕(jù)學生的回答,將答案一一貼或?qū)懹诤诎澹?/p>
2 :16; 4 :32; 16 :2; 32 :4;
16 :32; 2 :4; 32 :16; 4 :2。
1、認識比例及各部分名稱。
談話:學習數(shù)學,我們不僅要善于提問,還要善于觀察,F(xiàn)在就請你觀察這兩個比(16 :2;32 :4)看能發(fā)現(xiàn)什么?(學生會發(fā)現(xiàn)比值相等)
思考:這個比值所表示的實際意義是什么?(每次的運輸量)
既然它們的比值相等,那我們可以用什么符號將兩個比連接起來?
學生用等號連接,并請學生把這個式子讀一下。
試一試:剩下的這些比中,哪兩個也能用等于號連接?在你的練習本上寫寫看。(學生獨立完成)
介紹:像這樣表示兩個比相等的式子,數(shù)學上就把它叫做比例。我們知道,比有前項、后項,比例的各部分也有自己的名字。組成比例的四個數(shù)叫做比例的項,像16、4位于兩端的兩項叫做比例的外項,2、32位于中間的兩項叫做比例的內(nèi)項。比例,也可以寫成分數(shù)形式。
學生先把2 :16=4 :32這個比例寫成分數(shù)形式,再同桌倆交流它的內(nèi)項外項分別是誰。
自學提示:同學們表現(xiàn)得都特別棒,現(xiàn)在請你看課本自主練習第1題,能否根據(jù)剛才所學知識解決。(學生獨立完成)
2、比和比例有什么區(qū)別?
比
4︰6
比例
2︰3=4︰6
3.判斷下面兩個比能否組成比例?
6∶9 和 9∶12
總結方法:判斷兩個比能不能組成比例,要看它們的比值是否相等。
4.談話引入:剛才,你們是根據(jù)比例的意義先求出比值再判斷兩個比能否組成比例。我不是這樣想的,可能很快就判斷好了,想知道其中的秘密嗎?其實秘密就藏在比例的兩個內(nèi)項和兩個外項之中,它們兩者之間可是存在著一種奇妙的關系,你想揭穿這個秘密嗎?
那就請你以16:2=32:4為例,通過看一看,想一想,算一算等方法,試試能不能發(fā)現(xiàn)這個關系!
5、學生先獨立思考,再小組交流,探究規(guī)律。
出示研究方案:
、儆^察比例的兩個內(nèi)項與兩個外項,用算一算的方法,找同學說一說,你發(fā)現(xiàn)了什么。
②是不是每一個比例的兩個外項與兩個內(nèi)項都具有這種規(guī)律,請你再舉出這樣的例子來。
③通過以上研究,你發(fā)現(xiàn)了什么?
6、全班交流。
(1)哪個小組愿意將你們的發(fā)現(xiàn)與大家分享?
。2)還有其他發(fā)現(xiàn)嗎?
。3)你們組所發(fā)現(xiàn)的是不是個偶然現(xiàn)象呢?咱們最好是怎么辦?
7、驗證發(fā)現(xiàn),共享成功。
師:對,舉例驗證,這可是一種非常好的數(shù)學方法。那現(xiàn)在,咱們可以利用黑板上的比例,也可以自己組一個新的比例,驗證看看,是不是所有的比例都是兩個外項的積等于兩個內(nèi)項的積。(學生獨立驗證)
8、利用一個比例通過課件形象的展示兩個外項的積等于兩個內(nèi)項的積。
9、小結:不錯,看來同學們很會觀察,很會思考,很會驗證,自己發(fā)現(xiàn)了比例的一條規(guī)律。也就是,在比例里,兩個外項的積等于兩個內(nèi)項的積。數(shù)學上我們把這條規(guī)律,叫做比例的基本性質(zhì)。這也是我們在小學階段,在繼分數(shù)、比的基本性質(zhì)之后學習的第三個基本性質(zhì)。運用它,我們可以解決許多數(shù)學問題。
10、比例的基本性質(zhì)的應用:
應用比例的基本性質(zhì),判斷下面兩個比能不能組成比例.
6∶3 和 8∶5
方法:a、先假設這兩個比能組成比例
b、說出寫出的比例的內(nèi)項和外項分別是幾,再分別算出外項和內(nèi)項的積。
c、根據(jù)比例的基本性質(zhì)判斷組成的比例是否正確。
(二)自主練習,拓展提升
1、判斷下面每組中兩個比能否組成比例?
1/3∶ 1/4和12∶9 16∶2和32∶4 7∶4和5∶3 80∶2和200∶5
讓學生根據(jù)比例的意義進行判斷,教師結合回答板書:
1/3∶1/4 =12∶9 16∶2=32∶4 7∶4≠5∶3 80∶2=200∶5
2、連線:自主練習第3題。
3、填空:自主練習第6題。
4、自主練習第10題:
2:1=4:( ) 1.4:2=( ):3 1/2:1/3=3( ) 12:( )=( ):5
5、下面的四個數(shù)可以組成比例嗎?把組成的比例寫出來(能寫幾個寫幾個)。
2、3、4 和 6
因為 2 × 6 = 3 × 4 所以這四個數(shù)可以組成比例
2:3=4:6 6:4=3:2 4:2=6:3 3:6=2:4
2:4=3:6 6:3=4:2 4:6=2:3 3:2=6:4
練習時,給學生充足的時間讓學生獨立完成,然后交流溝通。
(三)回顧總結
在這節(jié)課中你又有什么新的收獲?
《比例的意義》教案10
教學目標:
1、 理解比例的意義,認識比例各部分名稱,初步了解比和比例的區(qū)別;理解比例的基本性質(zhì)。
2、 能根據(jù)比例的意義和基本性質(zhì),正確判斷兩個比能否組成比例。
3、 在自主探究、觀察比較中,培養(yǎng)學生分析、概括能力和勇于探索的精神。
4、 通過自主學習,讓學生經(jīng)經(jīng)歷探究的過程,體驗成功的快樂。
教學重、難點:
重點:理解比例的意義和基本性質(zhì),能正確判斷兩個比能否組成比例。
難點:自主探究比例的基本性質(zhì)。
教學準備:CAI課件
教學過程:
一、復習、導入
1、 談話:同學們,我們已經(jīng)學過了比的有關知識,說說你對比已經(jīng)有了哪些了解?(生答:比的意義、各部分名稱、基本性質(zhì)等。)
還記得怎樣求比值嗎?
2、 課件顯示:算出下面每組中兩個比的比值
、 3:5 18:30 ⑵ 0.4:0.2 1.8:0.9
⑶ 5/8:1/4 7.5:3 ⑷ 2:8 9:27
[評析:從學生已有的知識經(jīng)驗入手,方便快捷,為新課做好準備。]
二、認識比例的意義
。ㄒ唬┱J識意義
1、 指名口答上題每組中兩個比的比值,課件依次顯示答案。
師問:口算完了,你們有什么發(fā)現(xiàn)嗎?(3組比值相等,1組不等)
2、是啊,生活中確實有很多像這樣的比值相等的例子,這種現(xiàn)象早就引起了人們的重視和研究。人們把比值相等的'兩個比用等號連起來,寫成一種新的式子,如:3:5=18:30 。
。ㄕn件顯示:“3:5”與“18:30”先同時閃爍,接著兩個比下面的比值隱去,再用等號連接)
最后一組能用等號連接嗎?為什么?(課件顯示:最后一組數(shù)據(jù)隱去)
數(shù)學中規(guī)定,像這樣的一些式子就叫做比例。(板書:比例)
[評析:通過口算求比值,發(fā)現(xiàn)有3組比值相等,1組不等,自然流暢地引出比例。有效的課堂教學,就需要像這樣做好已有經(jīng)驗與新知識的銜接。]
3、今天這節(jié)課我們就一起來研究比例,你想研究哪些內(nèi)容呢?
。ㄉ穑合胙芯勘壤囊饬x,學比例有什么用?比例有什么特點……)
5、 那好,我們就先來研究比例的意義,到底什么是比例呢?觀察這些式子,你能說出什么叫比例嗎?
。ǜ鶕(jù)學生的回答,教師抓住關鍵點板書:兩個比 比值相等)
同學們說的比例的意義都正確,不過數(shù)學中還可以說得更簡潔些。
課件顯示:表示兩個比相等的式子叫做比例。
學生讀一讀,明確:有兩個比,且比值相等,就能組成比例;反之,如果是比例,就一定有兩個比,且比值相等。
[評析:比例的意義其實是一種規(guī)定,學生只要搞清它“是什么”,而不需要知道“為什么”。本環(huán)節(jié)讓學生先觀察,再用自己的話說說什么是比例,學生都能說出比例意義的關鍵所在——兩個比且比值相等,教師再精簡語句,得出概念,注重了對學生語言概括能力的培養(yǎng)。在總結得出概念之后,教師沒有嘎然而止,而是繼續(xù)引導學生讀一讀,從正反兩方面進一步認識比例,加深了學生對比例的內(nèi)涵的理解。]
。ǘ┚毩
1、 出示例1 根據(jù)下表,先分別寫出兩次買練習本的錢數(shù)和本數(shù)的比,再判斷這兩個比能否組成比例。
第一次
第二次
買練習本的錢數(shù)(元)
1.2
2
買的本數(shù)
3
5
。1)學生獨立完成。
。2)集體交流,明確:根據(jù)比例的意義可以判斷兩個比能否組成比例。
2、完成練習紙第一題。
一輛汽車上午4小時行駛了200千米,下午3小時行駛了150千米。
、欧謩e寫出上、下午行駛的路程和時間的比,這兩個比能組成比例嗎?為什么?
⑵分別寫出上、下午行駛的路程的比和時間的比,這兩個比能組成比例嗎?為什么?
[評析:這兩道練習題既幫助學生鞏固了比例的意義,學會根據(jù)比例的意義判斷兩個比能否組成比例;又讓學生進一步體驗到比例在生活中的應用。練習1其實是對例題的巧妙補充。]
3、剛才我們先寫出了比,然后再寫出了比例,你覺得比和比例一樣嗎?有什么區(qū)別?
。ㄒ龑W生歸納出:比例由兩個比組成,有四個數(shù);比是一個比,有兩個數(shù))
4、教學比例各部分的名稱
。1) 課件出示: 3 : 5
前項 后項
。2) 課件出示:3 : 5 = 18 : 30
內(nèi)項
外項
。3) 如果把比例寫成分數(shù)的形式,你能指出它的內(nèi)、外項嗎?
課件出示:3/5=18/30
[評析:由練習題中先寫比、再寫比例,自然引出比和比例的的區(qū)別,再由比的各部分名稱到比例的各部分名稱,環(huán)環(huán)相扣、自然流暢、一氣呵成。]
5、小結、過渡:
剛才我們已經(jīng)研究了比例的意義、各部分名稱,也知道了比例在生活中有很多的應用,接下來我們一起來研究比例是否也有什么規(guī)律或者性質(zhì),有興趣嗎?
三、探究比例的基本性質(zhì)
1、課件先出示一組數(shù):3、5、10、6
再出示:運用這四個數(shù),你能組成幾個等式?(等號兩邊各兩個數(shù))
2、 獨立思考,并在作業(yè)本上寫一寫。
學生組成的等式可能有:10÷5=6÷3 或10:5=6:3;3÷5=6÷10或3:5=6:10;3:6=5:10;5×6=3×10……
根據(jù)學生回答板書: 3×10=5×6 3:5=6:10
3:6=5:10
5:3=10:6
6:3=10:5
3、 引導發(fā)現(xiàn)規(guī)律
。1)還有不同的乘法算式嗎?(沒有,交換因數(shù)的位置還是一樣)
乘法算式只能寫一個,比例卻寫了這么多,這些比例一樣嗎?(不同,因為比值各不相同)
(2)那么,這些比例式中,有沒有什么相同的特點或規(guī)律呢?仔細觀察,你能發(fā)現(xiàn)比例的性質(zhì)或規(guī)律嗎?
(3)學生先獨立思考,再小組交流,探究規(guī)律。
(板書:兩個外項的積等于兩個內(nèi)項的積。)
[評析:“運用這四個數(shù),你能組成幾個等式”,不同的學生寫出的算式各不相同,也會有多少之別,這里充分發(fā)揮交流的作用,讓每一個學生的思考都變成有用的教學資源?紤]到直接探究比例的基本性質(zhì)學生會有困難,教師作了適當?shù)囊龑,通過乘法算式和比例式的橫向聯(lián)系,讓學生在變中尋不變,從而探究出性質(zhì)。]
4、驗證:是不是任意一個比例都有這樣的規(guī)律?
⑴課件顯示復習題(4組),學生驗證。
、茖W生任意寫一個比例并驗證。
、峭暾鍟涸诒壤,兩個外項的積等于兩個內(nèi)項的積。這就是比例的基本性質(zhì)。
[評析:給學生提供大量的事例,要求他們多方面驗證,從個別推廣到一般,讓學生學會科學地、實事求是地研究問題。]
5、思考3/5=18/30是那些數(shù)的乘積相等。課件顯示:交叉相乘。
6、小結:剛才我們是怎樣發(fā)現(xiàn)比例的基本性質(zhì)的?(寫了一些比例式,觀察比較,發(fā)現(xiàn)規(guī)律,再驗證)
四、 綜合練習
完成練習紙2、3、4
附練習紙:2、下面每組中的兩個比能組成比例嗎?把組成的比例寫下來,并說說判斷的理由。
14 :21 和 6 :9
1.4 :2 和 5 :10
3、判斷下面哪一個比能與 1/5:4組成比例。
、5:4 ② 20:1
、1:20 ④5:1/4
4、在( )里填上合適的數(shù)。
1.5:3=( ):4
=
12:( )=( ):5
[評析:習題的安排旨在對比例的意義和基本性質(zhì)進行進一步的鞏固和應用,最后一道開放題答案不唯一,意在進一步讓學生體驗和感悟數(shù)學的“變”與“不變”的美妙與統(tǒng)一。]
五、全課總結(略)
《比例的意義》教案11
教學內(nèi)容:教材第30~31頁比例的意義和基本性質(zhì),練習六第1~5題。
教學要求:使學生理解比例的意義和基本性質(zhì),能用比例的意義或性質(zhì)判斷兩個比成不成比例;通過教學培養(yǎng)學生初步的綜合、概括能力。
教學重點:理解比例的意義和基本性質(zhì)。
教學難點:用比例的意義或性質(zhì)判斷兩個比成不成比例。
教學理念:以學生為主體,把較多的時間和空間留給學生探索、交流、概括。
教具、學具準備:小黑板,教學課件
教學步驟
一、復習鋪墊
l.什么叫做兩個數(shù)的比?請你說出兩個比。(教師板書)
2.什么是比的比值?上面兩個比的比值是多少?
3.引入新課。
我們已經(jīng)認識了比,知道怎樣求比值。今天就根據(jù)比和比值來學習比例,并且認識比例的基本性質(zhì)。(板書課題)
二、導入新課
1.教學比例的意義。
讓學生算出下面各比的比值,再比較每組里兩個比的比值有什么關系。(指名板演)
(1) 3 :5 24 :40 (2) :7.5 :3
追問:比值相等,說明每組里兩個比怎樣?
指出:表示兩個比相等的式子叫做比例。
說一說,上面兩個等式表示的'是怎樣的式子?
2.下面兩個比之間的哪些○里能填“=”,為什么?
1 :2○3 :6 0.5 :0.2○5 :2
1.5 :3○15 :3:2○:1
提問:填了等號后的式子是什么? 1.5 :3和15 :3為什么不能組成比例?要判斷兩個比能不能組成比例,可以看它們的什么?指出:要判斷兩個比是不是相等,可以看比值是不是相等;也可以把兩個比化簡后看是不是相同的兩個比。
3.教學例1。
出示例1,讓學生先寫出兩次買練習本的錢數(shù)和本數(shù)的比。提問:怎樣判斷這兩個比能不能組成比例?讓學生判斷并寫出比例。提問:能不能組成比例?(板書比例式)為什么?強調(diào):只有兩個比值相等的比才能組成比例。
讓學生根據(jù)比例的意義,在( )里填上適當?shù)臄?shù)。
3 :6=5 :( ) 0.8 :( )=1 :
4.教學比例的基本性質(zhì)。
向?qū)W生說明比例各部分的名稱。
讓學生看開始組成的兩個比例,說一說其中的內(nèi)項和外項。讓學生計算上面比例里兩個外項的積和兩個內(nèi)項的積,并要求觀察,從中發(fā)現(xiàn)什么。
5.判斷能否組成比例。
出示“3.6 :1.8和0.5 :0.25”。讓學生自己根據(jù)比例的基本性質(zhì)判斷,如果能組成比例就寫出這個比例式。提問:2.6 :1.8和0.5 :0.25能組成比例嗎?
強調(diào)指出:根據(jù)比例的基本性質(zhì),也可以判斷兩個比能不能組成比例,判斷時可以先把兩個比看成是比例。如果兩個外項的積等于兩個內(nèi)項的積,兩個比就能組成比例;如果不相等,就不能組成比例。
如果學生有困難,啟發(fā)用比值相等的方法推算。填寫以后,學生回答:為什么填這個數(shù)?
讓學生口答結果。提問:從上面的計算里,你發(fā)現(xiàn)了什么,出示比例的基本性質(zhì),并讓學生說一說。如果把比例寫成分數(shù)形式,請你說一說外項和內(nèi)項。提問:在這個比例里交叉相乘的積有什么關系?追問:為什么交叉相乘的積相等?
三、鞏固練習
1. 提問:什么叫做比?什么叫做比例?比和比例有什么不同的地方?怎樣判斷兩個比能不能組成比例?
2. 完成“練一練”。
指名4人板演.集體訂正.說說是怎樣判斷的?
3.做練習六第1題。
讓學生做在練習本上。如果能組成比例就再寫出比例。提問練習情況并板書,讓學生說明“為什么”。
4.做練習六第2題。
讓學生判斷,在練習本上寫出來。提問:哪一個比和:4組成比例?為什么,(比值相等,或化簡后兩個比相同)
5.完成練習六第3題。
學生先觀察、計算,然后口答,說明理由。
四、全課小結
這堂課學習了什么內(nèi)容?什么叫做比例?比例的基本性質(zhì)是什么?可以怎樣判斷兩個比能不能組成比例?
五、布置作業(yè)
練習六第4、5題。
《比例的意義》教案12
教學目標:
1、學生根據(jù)具體情境教學,結合實例認識正比例,理解正比例的意義,正比例的意義教學設計。
2、能根據(jù)正比例的意義,判斷兩個相關聯(lián)的量是不是成正比例。
3、結合豐富的事例,認識正比例,體會數(shù)學源于生活,進一步提高學習興趣。教學重點:
結合豐富的事例,認識正比例。能根據(jù)正比例的意義,判斷兩個相關聯(lián)的量是不是成正比例。
教學難點:
能根據(jù)正比例的意義,判斷兩個相關聯(lián)的量是不是成正比例。
教學關鍵:
理解成正比例的兩個量的意義。
教學過程:
一、復習準備:
口答
1、已知路程和時間,怎樣求速度?
2、已知總價和數(shù)量,怎樣求單價?
3、已知工作總量和工作時間,怎樣求工作效率?
二、數(shù)學活動。在學活動的過程中,感受數(shù)學思考過程的條理性和數(shù)學結論的確定性,并樂于與人交流。
活動一:在情境中感受兩種相關聯(lián)的量之間的變化規(guī)律。
(一)情境一:
課件出示:
1、觀察圖,分別把正方形的周長與邊長,面積與邊長的變化情況填入表格中。請根據(jù)你的觀察,把數(shù)據(jù)填在表中。
2、填完表以后思考討論,教案《正比例的意義教學設計》。正方形的面積與邊長的變化是否有關系?它們的變化分別有怎樣的規(guī)律?規(guī)律相同嗎?說說從數(shù)據(jù)中發(fā)現(xiàn)了什么?
3、小結:正方形的周長和面積都隨邊長的增加而增加,在變化過程中,正方形的周長與邊長的比值一定都是一定的。
特點是:
、賰煞N相關聯(lián)的量
、谝环N量擴大(或縮小)另一種量也擴大(或縮小)
③兩種量中相對應的兩個量的比的比值是一定的。
4、正方形的面積與邊長的比是邊長,是一個不確定的值。
學生在小組內(nèi)練說發(fā)現(xiàn)的規(guī)律,初步感知正比例的判定。
(二)情境二:
1、一種汽車行駛的速度為90千米/小時。汽車行駛的時間和路程如下:
2、請把下表填寫完整。3、從表中你發(fā)現(xiàn)了什么規(guī)律?說說你發(fā)現(xiàn)的規(guī)律:路程與時間的比值(速度)相同。
(三)情境三:1、一些人買一種蘋果,購買蘋果的質(zhì)量和應付的錢數(shù)如下。
2、把表填寫完整。3、從表中發(fā)現(xiàn)了什么規(guī)律?應付的錢數(shù)與質(zhì)量的比值(也就是單價)相同。
3、說說以上兩個例子有什么共同的特點。
小結:路程隨時間的變化而變化,路程與時間的比值相同;應付的錢數(shù)隨購買蘋果的質(zhì)量的變化而變化,應付的錢數(shù)與質(zhì)量的比值相同。
4、正比例關系:觀察思考成正比例的量有什么特征?
小結:
(1)兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。這就是我們今天要學習的內(nèi)容。
追問:判斷兩種相關聯(lián)的量成不成正比例的關鍵是什么?(比值是不是一定)
(2)字母表達關系式。
如果字母y和x分別表示兩種相關聯(lián)的量,用k表示它們的比值,正比例關系怎樣用字母表示出來?=k(一定)
(3)質(zhì)疑。
師:根據(jù)正比例的意義以及表示正比例關系的式子想一想:構成正比例關系的兩種量必須具備哪些條件?
三、鞏固練習
(一)想一想:請生用自己的語言說一說。與同桌交流,再集體匯報
1、正方形的'周長與邊長成正比例嗎?面積與邊長呢?為什么?
2、根據(jù)小明和爸爸的年齡變化情況
把表填寫完整。父子的年齡成正比例嗎?為什么?
(二):練一練。教師適度點撥引導,強調(diào)正比例關系判斷的關鍵。先自己獨立完成,然后集體訂正,說理由。
1、判斷下面各題中的兩個量,是否成正比例,并說明理由。
(1)每袋大米的質(zhì)量一定,大米的總質(zhì)量和袋數(shù)。
(2)一個人的身高和年齡。
(3)寬不變,長方形的周長與長。
2、根據(jù)下表中平行四邊形的面積與高相對應的數(shù)值,判斷當?shù)资?厘米的時候,它們是是成正比例,并說明理由。
3、買郵票的枚數(shù)與應付的錢數(shù)成正比例嗎?填寫表格。先填寫表格,再說明理由
4、畫一畫,你會有新的發(fā)現(xiàn)。
彩帶每米4元,購買2米、3米…彩帶分別需要多少錢?
①填一填:(長度:米,價格:元)
、诋嬕划嫞焉媳碇虚L度和價錢對應的點描在坐標紙上,再順次連接起來。看發(fā)現(xiàn)了什么?
板書:
正比例的意義
、賰煞N相關聯(lián)的量
、谝环N量擴大(或縮小)另一種量也擴大(或縮小)
③兩種量中相對應的兩個量的比的比值是一定的
路程÷時間=速度(一定)總價÷數(shù)量=單價(一定)
=k(一定)
《比例的意義》教案13
教學目標
一、知識目標
1、使學生理解比例的意義和比例的基本性質(zhì).
2、認識比例的各部分名稱,會組成比例.
二、能力目標
1、使學生學會應用比例的意義和基本性質(zhì)判斷兩個比能否組成比例,并能正確組成比例.
2、培養(yǎng)學生的觀察能力和判斷能力.
三、情感目標
1、對學生進一步滲透辨證唯物主義觀點的啟蒙教育.
2、使學生感悟到美源于生活,美來自生產(chǎn)和時代的進步,提高審美意識
教學重點
比例的意義和基本性質(zhì).
教學難點
應用比例的意義或基本性質(zhì)判斷兩個比能否組成比例,并能正確地組成比例.
教學對象分析
低年級學生思維的基本特點是:從以具體形象思維為主要形式過渡到以抽象邏輯思維為主要形式,針對這一特點,利用多媒體這一新穎、直觀的現(xiàn)代教學手段創(chuàng)設引人入勝的教學情境,并通過動手操作,討論探究,觀察分析,給學生充分的時間和機會,讓他們主動參與獲取知識的全過程,從而培養(yǎng)學生問題意識、策略意識及創(chuàng)新意識。
教學策略及教法設計
教學時有意識創(chuàng)設情境,激發(fā)學生探索問題的欲望,不斷發(fā)現(xiàn)問題,解決問題.通過動手操作,觀察演示,小組討論等活動,讓學生運用知識和能力的遷移規(guī)律,將知識結構轉(zhuǎn)化為學生的認知結構,突出學生的主體作用.
1.多媒體教學
運用微機精心設置問題情境,使學生自覺發(fā)現(xiàn)、意識到問題存在,可激活學生思維,促使問題意識的產(chǎn)生,又可以調(diào)動學生探索新知的積極性.
2.動手操作法
引導學生發(fā)現(xiàn)問題,提出問題,然后組織學生借助學具動手操作,尋求多種計算方法,同時運用多媒體,變靜為動,直觀形象,再結合語言表述,使學生的思維逐漸內(nèi)化.
教學步驟
一、鋪墊孕伏
1、什么叫做比?
2、什么叫做比值?
3、求下面各比的比值:
4、教師提問:上面哪些比的比值相等?( 和 這兩個比的比值相等)
教師: 和 這兩個比的比值相等,也就是說這兩個比是相等的,因此它們可以用等號連接.(板書: = )
二、探究新知
。ㄒ唬┍壤囊饬x
例1、一輛汽車第一次2小時行駛80千米,第二次5小時行駛200千米.列表如下:
時間(時)
2
5
路程(千米)
80
200
1、教師提問:從上表中可以看到,這輛汽車,
第一次所行駛的路程和時間的比是幾比幾?
第二次所行駛的路程和時間的比是幾比幾?
這兩個比的比值各是多少?它們有什么關系?(兩個比的比值都是40,相等)
2、教師明確:兩個比的比值都是40,所以這兩個比相等.因此可以寫成這樣的等式
或 .
3、揭示意義:像 = 、 這樣的等式,都是表示兩個比相等的式子,我們把它叫做比例.(板書課題:比例的意義)
教師提問:什么叫做比例?組成比例的關鍵是什么?
板書:表示兩個比相等的式子叫做比例.
關鍵:兩個比相等
4、練習
下面哪組中的兩個比可以組成比例?把組成的比例寫出來.
、 和 ② 和
③ 和 ④ 和
填空
、偃绻麅蓚比的比值相等,那么這兩個比就( )比例.
、谝粋比例,等號左邊的比和等號右邊的比一定是( )的'.
(二)比例的基本性質(zhì)
1、教師以 為例說明:組成比例的四個數(shù),叫做比例的項.兩端的兩項叫做比例的外項,中間的兩項叫做比例的內(nèi)項.(板書)
2、練習:指出下面比例的外項和內(nèi)項.
3、讓學生計算上面每一個比例中的外項積和內(nèi)項積,并討論它們存在什么關系?
以 為例,指名來說明.
外項積是:80×5=400
內(nèi)項積是:2×200=400
80×5=2×200
4、學生自己任選兩三個比例,計算出它的外項積和內(nèi)項積.
5、教師明確:在比例里,兩個外項的積等于兩個內(nèi)項的積.這叫做比例的基本性質(zhì)
。ò鍟n題:加上“和基本性質(zhì)”,使課題完整.)
6、思考:如果把比例寫成分數(shù)形式,等號兩端的分子和分母分別交叉相乘的積有什么關系?為什么?
教師板書:
7、練習
應用比例的基本性質(zhì),判斷下面哪一組中的兩個比可以組成比例.
三、課堂小結
這節(jié)課我們學習了比例的意義和基本性質(zhì),并學會了應用比例的意義和基本性質(zhì)組成比例.
四、鞏固練習
1、說一說比和比例有什么區(qū)別.
比是表示兩個數(shù)相除的關系,有兩項;
比例是一個等式,表示兩個比相等的關系,有四項.
2、在 這個比例中,外項是( )和( ),內(nèi)項是( )和( ).
根據(jù)比例的基本性質(zhì)可以寫成( )×( )=( )×( ).
3、根據(jù)比例的意義或者基本性質(zhì),判斷下面哪組中的兩個比可以組成比例.
。1) 和 (2) 和
。3) 和 (4) 和
4、下面的四個數(shù)可以組成比例嗎?把組成的比例寫出來.(能組幾個就組幾個)
2、3、4和6
五、課后作業(yè)
根據(jù)3×4=2×6寫出比例.
六、板書設計
《比例的意義》教案14
設計說明
本節(jié)課的教學內(nèi)容包含“比例的意義和比例的基本性質(zhì)”兩部分。本節(jié)課的內(nèi)容是這個單元的起始,屬于概念教學,是為以后解比例,講解正比例、反比例做準備的。學生學好這部分的知識,不僅可以初步接觸函數(shù)的思想,還可以解決日常生活中的一些具體問題。遵循“自主探索與合作交流”的《數(shù)學課程標準》理念,本節(jié)課在教學設計上有以下特點:
1.重視有效學習情境的創(chuàng)造。
新課伊始,通過談話激活學生對國旗的已有認識,引出本節(jié)課要用的中國國旗的三種不同規(guī)格的相關數(shù)據(jù),激發(fā)學生的學習興趣,使學生在熟悉的現(xiàn)實情境中,情緒飽滿地進入到對比例知識的探究學習中。
2.重視引導學生自主探究。
教學比例的意義時,先引導學生依據(jù)三面國旗的長與寬寫出多個比,再引導學生發(fā)現(xiàn)它們的比值相等,可以寫成一個等式,引出比例,最后引導學生通過自己的'分析、思考,進行歸納總結出比例的意義。
3.重視引導學生合作交流。
《數(shù)學課程標準》指出:“合作交流是學生學習數(shù)學的重要方式!睘榇耍覀冊诮虒W中,不但要引導學生進行自主探究,還要引導學生進行合作交流。以“比例的基本性質(zhì)”的探究為例,在教學中,通過小組合作交流,讓學生思維互補,既有利于知識的學習,又有利于學生概括能力及語言表達能力的培養(yǎng)。
課前準備
教師準備 PPT課件
教學過程
⊙滲透情感,導入新課
1.課件出示國旗畫面,學生觀察,激發(fā)愛國情操。
(天安門升國旗儀式、校園升旗儀式、教室場景)
師:這三幅不同的場景都有共同的標志——五星紅旗,五星紅旗是中華人民共和國的象征;這些國旗有大有小,你知道這些國旗的長和寬分別是多少嗎?
2.課件出示國旗的長和寬,并提出問題。
天安門升旗儀式上的國旗:長5 m,寬 m。
操場升旗儀式上的國旗:長2.4 m,寬1.6 m。
教室里的國旗:長60 cm,寬40 cm。
師:這些國旗的大小不一,是不是國旗想做多大就做多大呢?是不是這中間隱含著什么共同的特點呢?
3.導入新課。
師:每面國旗的大小不一樣,但是它們的長和寬中卻隱含著共同的特點,是什么呢?這節(jié)課我們就結合國旗的知識來學習比例的意義和基本性質(zhì)。
(板書課題:比例的意義和基本性質(zhì))
設計意圖:通過談話,激發(fā)學生的愛國情感和求知欲,在加強學生對國旗知識了解的同時,有效地引入學習資源,為學生探究比例的意義和基本性質(zhì)提供第一手資料。
⊙合作交流,探究新知
1.教學比例的意義。
(1)自主嘗試。
課件出示教材40頁主題圖,根據(jù)圖中給出的數(shù)據(jù)分別寫出不同場景中國旗的長和寬的比,并求出比值。
(2)匯報、交流。
預設
生1:天安門升旗儀式上的國旗。
長∶寬=5∶=
生2:操場升旗儀式上的國旗。
長∶寬=2.4∶1.6=
生3:教室里的國旗。
長∶寬=60∶40=
(3)感知比例的意義。
觀察寫出的比,想一想,這些比能用等號連接嗎?為什么?用等號連接的兩個比的式子可以怎樣寫?
預設
生1:可以用等號連接,因為它們的比值相等。
“2.4∶1.6=”和“60∶40=”可以寫作“2.4∶1.6=60∶40”。
生2:可以用等號連接,兩個比的比值相等,說明這兩個比也是相等的。
生3:根據(jù)比與分數(shù)的關系,“2.4∶1.6=60∶40”
也可以寫成“=”。
《比例的意義》教案15
教學目標:
(1)通過計算、觀察、比較,讓學生概括、理解比例的意義和比例的基本性質(zhì)。
(2)認識比例的各部分名稱。
(3)學會用比例的意義或比例的基本性質(zhì),判斷兩個比能不能組成比例,并寫出比例。
教學重點難點:
理解比例的意義和基本性質(zhì),會用比例的意義和基本性質(zhì)判斷兩個比能不能組成比例,并寫出比例。
教具學具準備:
幻燈片、學習卡。
教學過程:
一、創(chuàng)設情景,引入新課。
出示三幅場景圖。
。1)圖上描述的是什么情景?這幾幅圖都與什么有關?
。2)這三面國旗有什么相同和不同的地方?(形狀相同,大小不同)
。3)你們有見過這樣的國旗嗎?或者這樣的?
我們的國旗,不論大小,之所以形狀相同,是因為它們都是按照一定的比例來制作的,從今天開始,我們將要學習有關比例的知識。板書課題
二、自主探究,明確意義
1、提問:你們知道每一幅圖中國旗的長和寬分別是多少嗎?
2、談話:在制作國旗的過程中存在著有趣的比。請同學們拿出第一張自主學習卡,算一算這三幅國旗的長、寬之比,求出比值,并同桌互相說一說你有什么發(fā)現(xiàn)?
3、學生匯報。
4、我們以操場上和教室里的國旗為例,2.4:1.6= ,60:40= ,這兩個比的比值相等,中間可以用等號連接起來,寫成2.4:1.6=60:40,因為比還可以寫成分數(shù)形式,所以還可以寫成=。
像這樣表示兩個比相等的式子叫做比例。(板書)
5、在上圖的三面國旗的尺寸中,還有哪些比可以組成比例?
6、深入探討:
。1)比例有幾個比組成?
。2)是不是任意兩個比都能組成比例?
。3)判斷兩個比能不能組成比例,關鍵要看什么?
7、完成“做一做”。
三、探究比例的基本性質(zhì)。
1、學習比例各部分的名稱。
教師:我們知道組成比的兩個數(shù)分別叫前項和后項,組成比例的四個數(shù)也有自己的名字,你們知道它們分別叫什么嗎?(課件出示)
。1)指名讀一讀有關知識。
。2)誰來介紹一下在2.4:1.6=60:40中,內(nèi)項和外項分別是誰?
隨著學生的回答教師出示:
2.4: 1.6 = 60: 40 (外項)(內(nèi)項)
└-內(nèi)項-┘ =
└------外項-------┘ (內(nèi)項)(外項)
。3)如果把比例寫成分數(shù)形式,你能找出它的內(nèi)項和外項嗎?
。4)任意選擇一個比例式,標出內(nèi)項、外項,同桌兩人互相檢查。
2、研究比例的基本性質(zhì)。
(1)活動探究,總結性質(zhì)。
談話:比有基本性質(zhì),比例表示兩個比相等的式子,也有它特有的性質(zhì),請同學們拿出2號自主學習卡,小組討論一下,寫一寫,算一算,解決以下問題。
、儆嬎阆旅姹壤袃蓚外項的積和兩個內(nèi)項的積,比較一下,你能發(fā)現(xiàn)什么?
2.4:1.6=60:40 =
、谀隳芘e一個例子,驗證你的發(fā)現(xiàn)嗎?
、勰隳艿贸鍪裁唇Y論?
、苣隳苡米帜副硎具@個性質(zhì)嗎?
(2)運用性質(zhì)。
、偬釂枺簩W了比例的基本性質(zhì),你覺得運用它能解決什么問題?
、谶\用比例的基本性質(zhì),判斷下面哪組中的兩個比可以組成比例。
(1) 6:3和8:5 (2) 0.2:2.5 和 4:50
(3) :和 : (4) 1.2: 和 :5
四、鞏固練習。
1、填空
。1)在a:7=9:b中,( )是內(nèi)項,( )是外項,a×b=( )。
。2)一個比例的兩個內(nèi)項分別是3和8,則兩個外項的積是( ),兩個外項可能是( )和( )。
。3)在一個比例里,兩個外項互為倒數(shù),那么兩個內(nèi)項的積是( ),如果一個外項是 ,另一個外項是( )。
。4)在比例里,兩個內(nèi)項的積是18,其中一個外項是2,另一個外項是( )。
。5)如果5a=3b,那么, = , = 。
2、判斷。
。1)在比例中,兩個外項的積減去兩個內(nèi)項的積,差是0。( )
。2)18:30和3:5可以組成比例。( )
。3)如果4X=3Y,(X和Y均不為0),那么4:X=3:Y。( )
。4)因為3×10=5×6,所以3:5=10:6。( )
3、把下面的等式改寫成比例:(能寫幾個寫幾個)
16 × 3 = 4 × 12
四、總結歸納
1、這節(jié)課我們學習了什么知識?你有什么收獲?
2、判斷兩個比能不能組成比例,有幾種方法?
比例在生活中有著廣泛的應用,比如:警察可以根據(jù)腳印的長短判斷罪犯的大致身高,根據(jù)影子的長度可以算出一棵大樹的高度等,都與比例有關,我們只要認真學好比例,就一定能幫助我們了解其中的奧秘。
板書設計
比例的意義和基本性質(zhì)
表示兩個比相等的式子叫做比例。
2.4: 1.6 = 60: 40 (外項)(內(nèi)項)
└-內(nèi)項-┘ 或 =
└------外項-------┘ (外項)(內(nèi)項)
在比例里,兩個外項的積等于兩個內(nèi)項的積。
A:B=C → AD=BC
《比例的意義》教案15
教學內(nèi)容:教科書第19—21頁正比例的意義,練習六的1—3題。
教學目的:
1.使學生理解正比例的意義,能夠根據(jù)正比例的意義判斷兩種量是不是成正比例。
2.初步培養(yǎng)學生用事物相互聯(lián)系和發(fā)展變化的觀點來分析問題。
3.初步滲透函數(shù)思想。
教具準備:投影儀、投影片、小黑板。
教學過程():
一、復習
用,投影片逐一出示下面的題目,讓學生回答。
1.已知路程和時間,怎樣求速度?板書: =速度
2.已知總價和數(shù)量,怎樣求單價?板書: =單價
3.己知工作總量和工作時間,怎樣求工作效率?板書:
。焦ぷ餍
4,已知總產(chǎn)量和公頃數(shù),怎樣求公頃產(chǎn)量?板書: =公頃產(chǎn)量
二、導人新課
教師:這是我們過去學過的一些常見的數(shù)量關系。這節(jié)課我們進一步來研究這些數(shù)量關系中的一些特征,首先來研究這些數(shù)量之間的正比例關系。(板書課題:正比例的意義)
三、新課
1.教學例1。
用小黑板出示例1:一列火車行駛的時間和所行的路程如下表:
提問:
“誰來講講例1的意思?”(火車1小時行駛60千米,2小時行駛120千米……)
“表中有哪幾種量?”
“當時間是1小時,路程是多少?當時間是2小時,路程又是多少?……”
“這說明時間這種量變化了,路程這種量怎么樣了?”(也變化了。)
教師說明:像這樣,一種量變化,另一種量也隨著變化,我們就說這兩種量是兩種相關聯(lián)的量。(板書:兩種相關聯(lián)的量)“時間和路程是兩種相關聯(lián)的量,路程是怎樣隨著時間變化而變化的呢?”
教師指著表格:我們從左往右觀察(邊講邊在表格上畫箭頭),時間擴大2倍,對應的路程也擴大2倍3時間擴大3倍,對應的路程也擴大3倍……從右往左觀察(邊講邊在表格上畫反方向的箭頭),時間縮小8倍,對應的路程也縮小8倍;時間縮小7倍,對應的路程也縮小7倍……時間縮小2倍,對應的路程也縮小2倍。通過觀察,我們發(fā)現(xiàn)路程是隨著時間的變化而變化的。時間擴大路程也擴大,時間縮小路程也縮小。它們擴大、縮小的規(guī)律是怎么樣的呢?
讓每一小組(8個小組)的`同學選一組相對應的數(shù)據(jù),計算出它們的比值。教師板書出來: =60. =60, =60…… 讓學生雙察這些比和它們的比值,看有什么規(guī)律。教師板書:相對應的兩個數(shù)的比值(也就是商)一定。
然后教師指著 =60, =60 = 60……問:“比值60,實際上是火車的什么:你能將這些式子所表示的意義寫成一個關系式嗎?板書: =速度(—定)
教師小結:通過剛才的觀察和分析.我們知道路程和時間是兩種什么樣的量?(兩種相關聯(lián)的量。)路程和時間這兩種量的變化規(guī)律是什么呢?(路程和時間的比的比值(速度)總是一定的。)
2.教學例2。
出示例2:在一間布店的柜臺上,有一張寫著某種花布的米數(shù)和總價的表。
讓學生觀察上表,并回答下面的問題:
(1)表中有哪兩種量?
(2)米數(shù)擴大,總價怎樣?米數(shù)縮小,總價怎樣?
(3)相對應的總價和米數(shù)的比各是多少?比值是多少?
當學生回答完第二個問題后,教師板書: =3.1, =3.1, =3.1……
然后進一步問:
“這個比值實際上是什么?你能用一個關系式表.示它們的關系嗎?”板書: =單價(一定)
教師小結:通過剛才的思考和分析,我們知道總價和米數(shù)也是兩種相關聯(lián)的量,總價是隨著米數(shù)的變化而變化的,米數(shù)擴大,總價也隨著擴大;米數(shù)縮小,總價也隨著縮小。它們擴大、縮小的規(guī)律是:總價和米數(shù)的比的比值總是一定的。
3.抽象概括正比例的意義。
教師:請同學們比較一下剛才這兩個例題,回答下面的問題;
(1)都有幾種量?
(2)這兩種量有沒有關系?
(3)這兩種量的比值都是怎樣的?
教師小結:通過比較,我們看出上面兩個例題,有一些共同特點:都有兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,并且這兩種量中相對應的兩個數(shù)的比值(也就是商)一定。像這樣的兩種量我們就把它們叫做成正比例的量,它們的關系叫做正比例關系。(板書出教科書上第’20頁的倒數(shù)第二段。)
接著指著例1的表格說明:在例1中,路程隨著時間的變化而變化,它們的比值(速度)保持一定,所以路程和時間是成正比例的量。隨后讓學生想一想:在例2中,有哪兩種相關聯(lián)的量:它們是不是成正比例的量?為什么?
最后教師提出:如果我們用字母X,y表示兩種相關聯(lián)的量.用字母K表示它們的比值,你能將正比例關系用字母表示出來嗎?
學生回答后,教師板書: =K(一定)
4,教學例3。
出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù)是不是成正比例?
教師引導:
“面粉的總重量和袋數(shù)是不是相關聯(lián)的量?”·
“面粉的總重量和袋數(shù)有什么關系?它們的比的比值是什么?這個比值是否—定?”(板書: =每袋面粉的重量(一定))
“已知每袋面粉的重量一定,就是面粉的總重量和袋數(shù)的比的比值是一定的,所以面粉的總重量和袋數(shù)成正比例!
5.鞏固練習。
讓學生試做第21頁“做一做”中的題目。其中(3)要求學生說明這個比值所表示的意義,學生說成是生產(chǎn)效率和每天生產(chǎn)的噸數(shù)都可以。
四、課堂練習
完成練習六的第1—3題。
第1題,做題前,讓學生想一想:成正比例的量要滿足哪幾個條件?然后讓學生算出各表中兩種相對應的數(shù)的比的比值,看看它們的比值是否相等。如果比值相等就可以列出關系式進行判斷。第(3)小題,要問一問學生為什么正方形的邊長和面積不成比例。(因為相對應的正方形的邊長和面積的比的比值不相等。)
第2題,先讓學生自己判斷,再訂正。其中(1)一(5)、(7)、(8)成正比例,(6)和(9)不成正比例。
第3題,可先讓同桌的同學互相舉例,然后再指名舉出成正比例的例子。
【《比例的意義》教案】相關文章:
《比例的意義》教案12-02
《比例的意義》教案(精選23篇)02-22
《比例的意義》教案(15篇)12-07
《比例的意義》教案15篇03-27
《正比例的意義》教案12-09
《比例的意義》教案(精選22篇)03-07
《比例的意義》教案14篇01-05
《比例的意義》教案(14篇)01-05
《比例的意義》教案(通用15篇)02-10
《比例的意義》教案匯編15篇12-30