国产精品入口免费视频_亚洲精品美女久久久久99_波多野结衣国产一区二区三区_农村妇女色又黄一级真人片卡

因數(shù)和倍數(shù)教學(xué)反思

時間:2024-10-25 11:53:04 教學(xué)反思 我要投稿

因數(shù)和倍數(shù)教學(xué)反思

  身為一名到崗不久的老師,我們要在教學(xué)中快速成長,寫教學(xué)反思能總結(jié)教學(xué)過程中的很多講課技巧,那么應(yīng)當(dāng)如何寫教學(xué)反思呢?以下是小編整理的因數(shù)和倍數(shù)教學(xué)反思,僅供參考,希望能夠幫助到大家。

因數(shù)和倍數(shù)教學(xué)反思

因數(shù)和倍數(shù)教學(xué)反思1

  《公倍數(shù)和公因數(shù)》的教學(xué)已接近尾聲,但練習(xí)反饋,部分學(xué)生求兩個數(shù)的最大公因數(shù)和最小公倍數(shù)錯誤百出,細(xì)細(xì)思量,用課本上列舉的方法,真的很難一下子準(zhǔn)確找到最大公因數(shù)或最小公倍數(shù)。如:8和10的最小公倍數(shù),有學(xué)生寫80,25和50的最大公因數(shù)有學(xué)生寫5!胰枂枌W(xué)生找兩個數(shù)公倍數(shù)和最小公倍數(shù),或者兩個數(shù)的公因數(shù)和最大公因數(shù)的'感受,他們都說“煩”,“很煩”,“太麻煩了”。

  在了解了學(xué)生的感受以后,我又重新通過練習(xí)概括出了一些特殊情況:

  (1)兩個數(shù)是倍數(shù)關(guān)系的,這兩個數(shù)的最小公倍數(shù)是其中較大的一個數(shù),最大公因數(shù)是其中較小的一個數(shù);

  (2)三種最大公因數(shù)是1,最小公倍數(shù)是兩數(shù)乘積的情況(“互質(zhì)數(shù)”這個概念學(xué)生沒有學(xué)到):

  ①兩個不同的素數(shù);

 、趦蓚連續(xù)的自然數(shù);

  ③1和任何自然數(shù)。

  另外,我又結(jié)合教材后面的“你知道嗎?”,指導(dǎo)了一下用短除法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)的方法。在完成練習(xí)時,讓學(xué)生根據(jù)情況,用自己喜歡的方法來求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)。這樣,給學(xué)生結(jié)合題目中兩個數(shù)的特點(diǎn),自主選擇方法的空間,學(xué)生比較喜歡。

  想來想去,還是真得很懷念舊教材上的“短除法”。

因數(shù)和倍數(shù)教學(xué)反思2

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不一樣。本節(jié)課又是這一單元的的教學(xué)重點(diǎn)。為讓學(xué)生很好的感受因數(shù)與倍數(shù)的意義,能夠熟練的找出一個數(shù)的.因數(shù)與倍數(shù),靈活地處理了教材,分為兩課時進(jìn)行。第一課時只讓學(xué)生認(rèn)識了因數(shù)和倍數(shù)的意義及找一個數(shù)的因數(shù)的方法,效果不錯。

  一、設(shè)計情境,引起思考。

  改變教材的情境圖,用學(xué)生有興趣的情意引入課題:有12個小方塊,要求擺成一個長方體,你想怎樣擺。引起學(xué)生思考,學(xué)生想到有3種擺法,每種擺法怎樣列式求出一共有多少方塊?由于方法的多樣性,為不一樣思維的展現(xiàn)供給了空間。從而理解決因數(shù)與倍數(shù)的意義。

  二、引導(dǎo)學(xué)生探求找因數(shù)的方法,使探索有方向。

  如何找一個數(shù)的因數(shù)是這節(jié)課的重點(diǎn),首先放手讓學(xué)生找出24的因數(shù),由于個人經(jīng)驗和思維的差異,出現(xiàn)了不一樣的方法與答案,在探索這些方法和答案的過程中,學(xué)生明白了如何求出一個數(shù)的因數(shù)的方法,從而掌握了知識點(diǎn)。

  根據(jù)學(xué)生的學(xué)習(xí)特點(diǎn),靈活的應(yīng)用教材,使之服務(wù)于教學(xué),讓教學(xué)有效的進(jìn)行,才能到達(dá)教學(xué)的目的。

因數(shù)和倍數(shù)教學(xué)反思3

  我在教學(xué)因數(shù)和倍數(shù)時,我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來人教版教材比有了很大的變化,人教版教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學(xué)時做了一些下的改動,讓學(xué)生用24張小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學(xué)生的算式就不僅限于乘法,有個別學(xué)生寫了除法算式。這樣學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因為現(xiàn)在我班也有個別學(xué)生在學(xué)習(xí)奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的概念.

  由于這節(jié)的概念較多,因此有不少是由老師直接告知的,但這并不意味著學(xué)生完全被動的接受。如讓學(xué)生思考:你覺得4和24、6和24之間有什么關(guān)系呢?(對乘除法學(xué)生有著相當(dāng)豐富的經(jīng)驗,因此不少學(xué)生能說出倍數(shù)關(guān)系,可能說得不很到位,但那是學(xué)生自己的東西)。當(dāng)學(xué)生認(rèn)識了倍數(shù)之后,我進(jìn)行了設(shè)問:24是4的倍數(shù),那反過來4和24是什么關(guān)系呢?盡管學(xué)生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會到24是4的倍數(shù),反過來4就是24的因數(shù),接下來就是6和24的關(guān)系,同學(xué)們都爭者要回答。

  如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的.次序進(jìn)行。接著讓學(xué)生在小組里討論兩個問題:

 、儆檬裁捶椒ㄕ36的因數(shù)。

  ②如何找不重復(fù)也不遺漏。

  通過在小組交流的過程中,學(xué)生與學(xué)生之間對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這比老師給予有效得多。學(xué)生就這樣輕松、愉快的學(xué)習(xí)了因數(shù)、倍數(shù)的有關(guān)知識。

因數(shù)和倍數(shù)教學(xué)反思4

  教學(xué)目標(biāo):

  1、使學(xué)生結(jié)合具體情境初步理解倍數(shù)和因數(shù)的含義,初步理解倍數(shù)和因數(shù)相互依存的關(guān)系。

  2、使學(xué)生依據(jù)倍數(shù)和因數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)倍數(shù)和因數(shù)的方法,能在1—100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù),找出100以內(nèi)某個數(shù)的所有因數(shù)。

  3、使學(xué)生在認(rèn)識倍數(shù)和因數(shù)以及找一個數(shù)的倍數(shù)和因數(shù)的過程中進(jìn)一步感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。

  教學(xué)重點(diǎn):

  理解因數(shù)和倍數(shù)的含義。

  教學(xué)難點(diǎn):

  探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。

  教學(xué)過程:

  一、認(rèn)識倍數(shù)和因數(shù)

  1、操作活動。

 。1)小黑板出示要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法表示出來。

  (2)整理:全班交流,分別板書4×3=1212×1=126×2=12

  3、學(xué)習(xí)“倍數(shù)”和“因數(shù)”的概念

 。1)談話:剛才同學(xué)們通過不同的擺法擺出了不同的長方形,而且還寫出了3個不同的乘法算式,今天,我們就一起來研究乘法算式中,數(shù)與數(shù)之間的關(guān)系。(出示:倍數(shù)和因數(shù))

  (2)根據(jù)4×3=12,你能說出誰是誰的倍數(shù)嗎?12是4的幾倍?12是3的幾倍?你能說出誰是誰的因數(shù)嗎?

  板書:12是4的倍數(shù),12是3的倍數(shù)

  4是12的因數(shù),3是12的因數(shù)

 。3)根據(jù)6×2=12,你能說出哪個數(shù)是哪個數(shù)的。倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)嗎?根據(jù)12×1=12呢?

 。4)練一練:從3×6=1836÷4=9中任選一題說一說。

  為什么4和9是36的因數(shù)?

  4、小結(jié):根據(jù)乘法或除法算式我們可以確定誰是誰的因數(shù),誰是誰的倍數(shù)。為了方便,在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。

  二、探索找一個數(shù)的倍數(shù)的方法

  1、談話:在剛才的談話中,我們知道了12是3的倍數(shù),18也是3的倍數(shù)

  提問:3的倍數(shù)只有這兩個嗎?

  你還能再寫出幾個3的倍數(shù)?

  你是怎樣想的?

  你能按照從小到大的順序有條理地說出3的倍數(shù)嗎?

  你能把3的倍數(shù)全都說完嗎?

  可以怎樣表示?

  2、議一議:你有沒有發(fā)現(xiàn)找3的倍數(shù)的小竅門?(在找3的倍數(shù)時,可以按從小到大的順序,依次用1、2、3……與3相乘,每次乘得的積都是3的倍數(shù))

  3、試一試:

 。1)2的倍數(shù)有

 。2)5的倍數(shù)有

  4、想一想:觀察上面幾個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點(diǎn)?

  5、練一練:想想做做2

  三、探索求一個數(shù)的因數(shù)的方法

  1、提出問題:你能找出36的所有因數(shù)嗎?

  2、四人小組合作完成

  3、交流整理找一個數(shù)的因數(shù)的`方法。

  4、試一試(既要一組一組地找,又要按次序排列)

  15的因數(shù)

  16的因數(shù)

  5、比一比:根據(jù)上面幾個例子,你發(fā)現(xiàn)一個數(shù)的因數(shù)有什么特點(diǎn)?和同桌說一說

  6、練一練:想想做做

  四、課堂總結(jié)。

  1、這節(jié)課,你有什么收獲?

  五、鞏固提高

  1、判斷

 。1)12是倍數(shù),3是因數(shù)

 。2)6既是2的倍數(shù),又是3的倍數(shù)。

 。3)25以內(nèi)4的倍數(shù)有:4,8,12,16,20,24……

 。4)6的最小倍數(shù)是12,12的最小因數(shù)是6。

  2、看誰反應(yīng)快

  游戲準(zhǔn)備:學(xué)生按學(xué)號編成連續(xù)的自然數(shù)。(課前)

  游戲規(guī)則:凡是學(xué)號符合以下要求的,請站起來,看誰反應(yīng)快?

 。1)誰的學(xué)號是5的倍數(shù)

 。2)誰的學(xué)號是24的因數(shù)

  (3)誰的學(xué)號是30的因數(shù)

 。4)誰的學(xué)號是1的倍數(shù)

  反思:

  在教學(xué)過程中出現(xiàn)了一個問題:是在提問:“根據(jù)4×3=12,你能說出誰是誰的倍數(shù)嗎?12是4的幾倍?12是3的幾倍?你能說出誰是誰的因數(shù)嗎?”時,發(fā)現(xiàn)學(xué)生根本不能回答,本來以為學(xué)生在三年級的時候應(yīng)該對這部分的內(nèi)容有所了解,能順利回答,但是在課后與三年級的教師交流后發(fā)現(xiàn)沒有這方面的內(nèi)容安排。由此,我想:新課程實施了五年,我其實還是門外漢,還不能很好地適應(yīng)新課程的要求,新課程的教材編排具有連續(xù)性,而老版本經(jīng)常是一個知識點(diǎn)安排在一起,注重深度?磥斫處煵还庖P(guān)心自己年級的教材內(nèi)容,還得知道整個教材編排體系,知道各個年級知識點(diǎn)之間的聯(lián)系。這樣才能更好地完成教學(xué)任務(wù),使學(xué)生得到應(yīng)有的發(fā)展而不是降低要求的發(fā)展或者是被強(qiáng)行提高要求的發(fā)展。

因數(shù)和倍數(shù)教學(xué)反思5

  《因數(shù)和倍數(shù)》這一教學(xué)內(nèi)容是一節(jié)概念課。教材在引入因數(shù)和倍數(shù)的概念時是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=c,表示b能被a整除,b÷c=a,表示b能被c整除。數(shù)學(xué)中的“起始概念”一般比較難教,我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩了難度,這一環(huán)節(jié)的`教學(xué),我覺得還是收到了預(yù)設(shè)的效果。

  能不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù),是本課的教學(xué)難點(diǎn)。在教學(xué)中,我是這樣設(shè)計的:在根據(jù)1×12=12,2×6=12,3×4=12三個乘法算式說出了誰是誰的因數(shù)、誰是誰的倍數(shù)后,教師緊接著提問:12的因數(shù)有哪些?學(xué)生看著黑板上的算式很快地找出12的因數(shù),接著再提問:你是用什么方式找到12的因數(shù)的?在學(xué)生說出方法后,為了讓學(xué)生探索出找一個因數(shù)的方法,我讓學(xué)生自己找一找15的因數(shù)有哪些。預(yù)設(shè)在匯報時,能借此解決如何有序、不重復(fù)、不遺漏地找出一個數(shù)的因數(shù)。但在實際交流時,學(xué)生的方法出現(xiàn)了兩種意見,并且各抒己見,因為15的因數(shù)只有兩對,無論怎樣找都不會遺漏。作為老師,我這時沒有把我的意見強(qiáng)加給學(xué)生,而是以男女生比賽的形式,讓學(xué)生分別找16、18的所有因數(shù)。由于部分學(xué)生運(yùn)用從小到大一對一對地找很快找出這兩個數(shù)的因數(shù),另一部分卻在無序的情況下,不是重復(fù)就是遺漏,這樣在比較中,不重復(fù)、不遺漏、有序地找出一個數(shù)的因數(shù)的方法,學(xué)生就能夠很好地接受并掌握。同時在練習(xí)中我設(shè)計了其中一道題是猜我的電話號碼,激發(fā)起學(xué)生的興趣,我是這樣想的:重在培養(yǎng)學(xué)生善于聯(lián)想,勇于探索的習(xí)慣。由個體現(xiàn)象聯(lián)想到同類現(xiàn)象并能深入探索,這是創(chuàng)造的源泉。雖然在這個環(huán)節(jié)上花了比較多的時間,但對學(xué)生自主探索、自主學(xué)習(xí)起到了很好的促進(jìn)作用。

  這節(jié)課另一個給我感觸最深的是:就是在引導(dǎo)學(xué)生歸納總結(jié)出一個數(shù)的因數(shù)的特點(diǎn)時,由于及時跟上個性化的語言評價,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來。借助這一學(xué)習(xí)熱情讓學(xué)生自己探索找一個數(shù)的倍數(shù)的方法。教師相信學(xué)生,學(xué)生學(xué)習(xí)興趣更濃。不僅探討出從小到大找一個數(shù)的倍數(shù)而且發(fā)現(xiàn)了倍數(shù)的特點(diǎn)。這一環(huán)節(jié)教學(xué)的成功,也使我改變了教學(xué)的觀念——適時放手,會看到學(xué)生更精彩的一面。以后教學(xué)需大膽相信學(xué)生,深入鉆研教材,既備教材又了解學(xué)情,作到收放自如,充分發(fā)揮學(xué)生的潛能。

  由于本節(jié)課的容量比較大,練習(xí)題設(shè)計綜合性比較強(qiáng),學(xué)生學(xué)得并不輕松,還存在一小部分學(xué)生沒有很好地理解因數(shù)與倍數(shù)的關(guān)系。今后,應(yīng)努力改進(jìn)教學(xué)手段,提高學(xué)困生的學(xué)習(xí)效率。

因數(shù)和倍數(shù)教學(xué)反思6

  《倍數(shù)和因數(shù)》這一章是人教版五年級下冊的內(nèi)容。由于這一單元概念較多,學(xué)生要掌握的知識較多,所以掌握起來較難。我上的這節(jié)復(fù)習(xí)課分以下四部分。

  1、先從自然數(shù)入手,由自然數(shù)的概念讓學(xué)生總結(jié)自然數(shù)的個數(shù)是無限的,最小的自然數(shù)是0,沒有最大的自然數(shù)。又根據(jù)生活實際試著讓學(xué)生把自然數(shù)分成奇數(shù)和偶數(shù)。點(diǎn)名說出什么數(shù)是奇數(shù),什么數(shù)是偶數(shù),是根據(jù)什么分的,這樣有一種水到渠成的感覺。

  2、由偶數(shù)都是2的倍數(shù),復(fù)習(xí)2的倍數(shù)的特征,5的倍數(shù)的特征,3的倍數(shù)的特征。學(xué)生邊復(fù)習(xí)老師邊板書,由于大家共同協(xié)作,很快找出一個數(shù)的最小倍數(shù)是它本身,沒有最大的倍數(shù)。然后總結(jié)同時能被2、3整除的數(shù)就是6的'倍數(shù),引出倍數(shù)和因數(shù)的意義。讓學(xué)生隨便說一個算式,說明誰是誰的倍數(shù),誰是誰的因數(shù)”,學(xué)生列舉乘法或除法算式,準(zhǔn)確表達(dá)倍數(shù)與因數(shù)的關(guān)系,加深了學(xué)生對倍數(shù)與因數(shù)相互依存關(guān)系的理解和認(rèn)識。

  3、隨便給出一個數(shù)找出它的所有因數(shù),得出一個數(shù)最小的因數(shù)是1,最大的因數(shù)是它身。根據(jù)因數(shù)的個數(shù)把自然數(shù)分成質(zhì)數(shù)、合數(shù)和1。復(fù)習(xí)什么是質(zhì)數(shù),什么是合數(shù)。最小的質(zhì)數(shù)是幾,最小的合數(shù)是幾。20以內(nèi)的質(zhì)數(shù)。為什么1既不是質(zhì)數(shù)也不是合數(shù)。這是根據(jù)什么分類的呢?任意給出一個數(shù)判斷是質(zhì)數(shù)還是合數(shù),若是合數(shù)讓學(xué)生分解質(zhì)因數(shù)。先說分解質(zhì)因數(shù)的方法,然后點(diǎn)名學(xué)生板演,教師巡視。指出錯誤。

  4、帶領(lǐng)學(xué)生一起做練習(xí),讓學(xué)生邊做邊說思路。這節(jié)課比較好的地方是條理清晰、內(nèi)容全面;練習(xí)的設(shè)計不僅緊緊圍繞教學(xué)重點(diǎn),而且注意到了練習(xí)的層次性、趣味性。

  不足之處是我缺乏個性化的語言評價激活學(xué)生的情感,以后需多努力。

因數(shù)和倍數(shù)教學(xué)反思7

  學(xué)而不思則罔,思而不學(xué)則殆。在學(xué)的過程更注重“思”的過程,即學(xué)習(xí)離不開啟發(fā)誘導(dǎo)。課堂提問是教學(xué)雙邊活動的紐帶,是師生互動,檢查學(xué)生學(xué)習(xí)情況和運(yùn)用知識的能力;是幫助學(xué)生鞏固已學(xué)知識以及促進(jìn)學(xué)生的思維,從而實現(xiàn)教和學(xué)的目標(biāo);是教學(xué)過程中師生交流的一種教學(xué)技能。[1]

  針對小學(xué)課堂提問次數(shù)過多學(xué)生忙于應(yīng)付、提問流于形式用優(yōu)生的思維取代全班學(xué)生的思維、教師忽視對問題的精心設(shè)計和組織提問得不到學(xué)生的配合的現(xiàn)狀,通過課堂提問,了解學(xué)生聽課質(zhì)量,檢查是否達(dá)到或在何種程度上達(dá)到了教學(xué)目標(biāo),啟發(fā)學(xué)生思考講課重點(diǎn)、要點(diǎn)、難點(diǎn)和延伸講課內(nèi)容等。現(xiàn)就小學(xué)數(shù)學(xué)課堂提問的有效性提出應(yīng)對以下對策:

  一、教師教學(xué)角度

  1.有效提問必須合理安排提問對象

  新課標(biāo)指出“人人要學(xué)有價值的數(shù)學(xué),不同的學(xué)生要得到不同的發(fā)展”。一個班級存在著不同層次的學(xué)生,在教學(xué)中,教師不要先提名再提問,或按一定次序輪流發(fā)問,比如按座位號或按點(diǎn)名冊上的學(xué)號,這樣會使其他學(xué)生產(chǎn)生“事不關(guān)己,高高掛起”的心理;不要形成教師與學(xué)生“一對一”的問答場面或總叫成績好的學(xué)生回答,這樣會使其他學(xué)生產(chǎn)生消極情緒;也不要總叫“差生”回答,這樣會花去很多時間,也會使教學(xué)節(jié)奏松弛。[2]

  2.有效提問必須內(nèi)容難度適中

  數(shù)學(xué)教學(xué)中,教師提問一定要把握好問題的難易度。具體做到:一是提問要問在學(xué)生的難度適度中。提問要對學(xué)生具有一定挑戰(zhàn)性,但又不是很難。有挑戰(zhàn)的問題才能刺激學(xué)生思考,讓學(xué)生體會到智力角逐的樂趣。而問題難度過大,往往又會挫傷學(xué)生的積極性。二是提問要有層次性。提問要由易到難,由淺入深,步步深入,把學(xué)生的思維一步一個臺階地引向新的高度。教學(xué)時,可以把難度大的`問題,分解成幾個適合學(xué)生回答的“小問題”。這一個個小問題圍繞著同一個知識點(diǎn),由淺入深,相互聯(lián)系,使學(xué)生的思維按照一定的層次向縱深發(fā)展,從而對新學(xué)知識有一個整體的正確的認(rèn)識。例如:在教學(xué)“圓的周長”時,先引導(dǎo)學(xué)生量圓的周長、直徑,發(fā)現(xiàn)圓的周長與直徑的關(guān)系。然后提問:1、圓的周長是直徑的多少倍?用什么表示?2、如果知道圓的直徑,怎樣求圓的周長?3、如果知道圓的半徑,你能否計算出圓的周長?為什么?4、你能總結(jié)出圓的周長的計算公式嗎?

  3.有效提問必須選好提問方式

  提問的方式一般選擇以下形式:直問――開門見山、直截了當(dāng)?shù)靥岢鰡栴}。如教學(xué)“分?jǐn)?shù)的初步認(rèn)識”,在引導(dǎo)學(xué)生認(rèn)識以后,教師提出這樣的問題:你能利用長方形、正方形、圓形紙等學(xué)具創(chuàng)造出新的分?jǐn)?shù)嗎?反問――根據(jù)學(xué)生的思維過程進(jìn)行反饋提出問題。如教學(xué)“9加幾”計算時,探究算法時,教師問:“9加5怎么算?”當(dāng)學(xué)生出現(xiàn)9加1,再加4算法時,教師要及時反問:“為什么要先加1,再加4?你們理解他的意思嗎?”這樣的反問有利于學(xué)生深入思考,在掌握算法的同時體驗數(shù)學(xué)的簡便,激發(fā)學(xué)習(xí)的興趣。追問――對某一內(nèi)容或問題,為了使學(xué)生弄懂弄通,往往在一問之后又再次提問,窮追不舍,直至學(xué)生真正理解為止……比如教學(xué)《倍數(shù)與因數(shù)》,有經(jīng)驗的老師往往會這樣去教:師:請找出2的倍數(shù)。生1:2、4、6、8。師問:你是怎樣找的?生1:我是這樣找的,2的1倍是2,2的2倍是4,2的3倍是6,2的4倍是8所以2、 4 、6、8都是2的倍數(shù)。師追問1:還能找出哪些2的倍數(shù)?生2:10、12、14、16。生3:18、20、22、24。師追問2:找得完嗎?生:找不完。師追問3:你能用一個詞來表示2的倍數(shù)的個數(shù)嗎?生1:無數(shù)個。生2:無限多。師追問4:2最小的倍數(shù)是幾?最大的倍數(shù)呢?生:2最小的倍數(shù)是2,2的倍數(shù)有無數(shù)個,沒有最大的倍數(shù)。[3]

  4.有效提問必須把握好提問時機(jī)

  提問是一種教學(xué)手段,更是一項藝術(shù)活動。教師提問時,要十分注重方法和技巧,以強(qiáng)化學(xué)生的認(rèn)知,提問要把握好提問時機(jī),既要抓住學(xué)生學(xué)習(xí)情緒需要激發(fā)、調(diào)動的時候,也要抓住學(xué)生研究目標(biāo)不明、思維受阻的時候,更要抓住促進(jìn)學(xué)生自我評價的時候。教師在課堂上不能“隨意問”,更不能“懲罰問”。教師在提出問題后應(yīng)該給學(xué)生留有一定的思考時間,以便提高學(xué)生回答的準(zhǔn)確性,提高課堂教學(xué)效率。一般來說,自提出問題到指定學(xué)生回答,至少應(yīng)該等待5~10秒鐘為宜。如果教師所提的問題是開放性的,那么留給學(xué)生的等待時間以20秒左右為宜。

  二、小學(xué)生心理角度

  1.消除心理障礙,激勵提問的積極性

  學(xué)生是學(xué)習(xí)實踐活動的主人,教師要允許學(xué)生質(zhì)疑,熱情地為他們創(chuàng)造吐露思想的機(jī)會。例如,在教學(xué)“三角形面積的計算”時,在學(xué)習(xí)了將兩個完全一樣的三角形通過“重合―旋轉(zhuǎn)―平移”得出公式后,有學(xué)生問“那兩個不一樣的三角形能拼成一個平行四邊形嗎?”這時可讓全班的學(xué)生大膽地進(jìn)行猜想,質(zhì)疑。然后,請同學(xué)們拿出手中兩個不一樣的三角形動手操作,再得出結(jié)論。對于學(xué)生的質(zhì)疑,要在態(tài)度上給予鼓勵,方法上加以指導(dǎo),讓學(xué)生在教師親切、贊賞的言行中產(chǎn)生強(qiáng)烈的思維意向,積極進(jìn)行思維活動。

  2.創(chuàng)設(shè)有效提問情境,激發(fā)提問的興趣

  “提問的情境”也就是我們平時所說的問題情境,是指課堂上教師通過巧妙的問題設(shè)計,引起學(xué)生積極探索和思考,以求解決問題的一種課堂氛圍,學(xué)記曰:“不憤不啟,不悱不發(fā)”。學(xué)生注意力渙散時,提一個共同感興趣的問題,往往能喚起他們的注意力;學(xué)生學(xué)習(xí)受阻時,如:從甲地到乙地,貨車行完全程需8小時,客車行完全程需6小時,貨車和客車的速度比是多少?大部分的學(xué)生會寫成了4比3,卻不知這是錯誤的答案。這時,教師點(diǎn)撥提問“8和6是什么條件呢?問題是要求什么的比呢?”因勢利導(dǎo),讓學(xué)生思考分析,讓學(xué)生重新振奮起來繼續(xù)探究。

  總之,課堂提問既是一門科學(xué)更是一門藝術(shù)。在平時的教學(xué)中,教師要注重提高課堂提問技巧,培養(yǎng)小學(xué)生提問的興趣,使課堂提問更加有效,更加符合小學(xué)生的知識水平和心理特點(diǎn),讓我們的課堂教學(xué)能夠“問”出精彩來。

因數(shù)和倍數(shù)教學(xué)反思8

  通過今天的學(xué)習(xí),你有什么收獲?

  課后作業(yè) :課后自已或與同學(xué)合作制作一個含有因數(shù)和倍數(shù)知識的轉(zhuǎn)盤。

  教后反思:

  40分鐘的時間一閃而過,輕松愉悅的課堂氣氛,讓學(xué)生的學(xué)習(xí)情緒空前高漲,學(xué)生的學(xué)習(xí)熱情,學(xué)習(xí)過程中數(shù)學(xué)思維的提升,都在這短短的時間內(nèi)讓我感覺無盡的驚喜。

  課堂導(dǎo)入,親切,有效,讓學(xué)生先在腦海中留下“關(guān)系”這種印象,學(xué)生通過自己閱讀明白誰是誰的因數(shù),誰是誰的倍數(shù),然后通過試一試、練習(xí)、特別是(8是倍數(shù),4是因數(shù)! ( ))的辨析,讓學(xué)生明白:在說倍數(shù)(或因數(shù))時,必須說明誰是誰的。倍數(shù)(或因數(shù))。不能單獨(dú)說誰是倍數(shù)(或因數(shù))。

  因數(shù)和倍數(shù)不能單獨(dú)存在。

  通過尋找一個數(shù)的因數(shù),和一個數(shù)的倍數(shù),讓學(xué)生通過多個實例找到規(guī)律。

  在教學(xué)中由于過分依賴課件,致使有的環(huán)節(jié)沒有深入,沒有給學(xué)生時間進(jìn)行

  因數(shù)和倍數(shù)的教學(xué)反思3

  一、“倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法一定要分清。

  “倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法只是新舊教材的說法不同而已,其實都是表示同一類數(shù)。(即因數(shù)也是約數(shù))

  二、為什么第十教科書上講“倍數(shù)與因數(shù)”的時候不提整除。

  也許我的頭腦還受舊版教材的影響,我認(rèn)為說到“倍數(shù)與因數(shù)”必須要談到整除,因為整除是研究“因數(shù)和倍數(shù)”的條件,學(xué)生在沒有這條件學(xué)習(xí)整除,只要教師的教學(xué)方法稍有不慎,學(xué)生會很快誤入小數(shù)也有因數(shù);但是我在實際的教學(xué)過程中,也體會到了教材中不提整除的好處。而我的心里卻又產(chǎn)生了一個新的疑問,S版教材到底在什么時候于什么數(shù)學(xué)環(huán)境下才提出“整除”這個概念呢?會不會在六年級課改才出現(xiàn)呢?我期待著。

  三、教學(xué)2、5和3的倍數(shù)教師應(yīng)注重“靈活”。

  1、 在教學(xué)2和5的倍數(shù)時,是用同一種方法找出它們倍數(shù)的,學(xué)生很容易掌握,也很快就能把2和5的倍數(shù)說出,并能準(zhǔn)確找出各自的倍數(shù),此時,教師應(yīng)把學(xué)生的思維轉(zhuǎn)到同時是2和5的倍數(shù)怎樣找?接著引導(dǎo)學(xué)生歸納出同時是2和5的倍數(shù)的特征,因此,讓學(xué)生的知識面進(jìn)一步加大。

  2、教學(xué)3的倍數(shù)的'特征時,教師首先讓學(xué)生用2和5的倍數(shù)的方法去找3的倍數(shù)的特征,讓學(xué)生嘗試這種方法是找不到3的倍數(shù)的特征,這時,教師應(yīng)該引導(dǎo)學(xué)生對寫出的3的倍數(shù),要用另一種方法去歸納、總結(jié)3的倍數(shù)的特征,運(yùn)用這一特點(diǎn),教師可以有意識地寫些數(shù)(有3的倍數(shù),也有不是3的倍數(shù),而且是較大的數(shù))讓學(xué)生進(jìn)行判斷,這樣可使學(xué)生對3的倍數(shù)的特征進(jìn)一步得到鞏固;當(dāng)學(xué)生熟練掌握3的倍數(shù)的特征時,教師話峰一轉(zhuǎn),你們能歸納出9的倍數(shù)的特征嗎?學(xué)生在教師這一激發(fā)下,他們的求知欲興趣大增,然后教師啟學(xué)生運(yùn)用找3的倍數(shù)的方法,去找9的倍數(shù)的特征,學(xué)生會輕而易舉地歸納、總結(jié)出9的倍數(shù)的特征。通過找9的倍數(shù)的特征,既鞏固了學(xué)生學(xué)習(xí)3的倍數(shù)的特征,還使學(xué)生的知識面擴(kuò)大,達(dá)到知識的鞏固和遷移的目的。

  3、當(dāng)學(xué)生掌握了2、5和3的倍數(shù)的特征時,教師這時應(yīng)引導(dǎo)學(xué)生進(jìn)一步歸納、總結(jié),把這三個特征綜合,從而得出同時是2、3和5的倍數(shù)的特征。

  通過這樣的教學(xué),讓學(xué)生真正感受到“靈活”兩字,并且能把知識面向縱橫方向發(fā)展。

因數(shù)和倍數(shù)教學(xué)反思9

  新教材在引入倍數(shù)和因數(shù)概念時與以往的老教材有所不同,比如在認(rèn)識“因數(shù)、倍數(shù)”時,不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我從以下三個方面談一點(diǎn)教學(xué)體會。

  一、設(shè)疑遷移,點(diǎn)燃學(xué)習(xí)的火花

  良好的開頭是成功的一半。我采用“拼拼擺擺”作為談話進(jìn)入正題,不僅可以調(diào)動學(xué)生的學(xué)習(xí)興趣,一一對應(yīng)、相互依存。對感知倍數(shù)和因數(shù)進(jìn)行有效的滲透和拓展。

  教學(xué)找一個數(shù)的倍數(shù)時,我依據(jù)學(xué)情,設(shè)計讓學(xué)生獨(dú)立探究尋找3的倍數(shù)。我設(shè)計了嘗試練——引出沖突——討論探究這么一個學(xué)習(xí)環(huán)節(jié)。學(xué)生帶著“又對又好”的.要求開始自主練習(xí),學(xué)生找倍數(shù)的方法有:依次加3、依次乘1、2、3……、用乘法口訣等等。在學(xué)生充分討論的基礎(chǔ)上,我組織學(xué)生圍繞“好”展開評價,有的學(xué)生認(rèn)為:從小到大依次寫,因為有序,所以覺得好;有的學(xué)生認(rèn)為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個倍數(shù)是多少,學(xué)生發(fā)現(xiàn)3的倍數(shù)寫不完時都面面相覷,左顧右盼。學(xué)生通過討論,認(rèn)為用省略號表示比較恰當(dāng)。用語文中的一個標(biāo)點(diǎn)符號解決了數(shù)學(xué)問題,自己發(fā)現(xiàn)問題自己解決,學(xué)生從中體驗到解決問題的愉快感和掌握新知的成就感。

  二、操作實踐,舉例內(nèi)化,認(rèn)識倍數(shù)和因數(shù)

  我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助多媒體出示乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,讓學(xué)生自主體驗數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義.使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。 這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。

  三、注重細(xì)節(jié),注重學(xué)生的習(xí)慣培養(yǎng)

  學(xué)生在找一個數(shù)的因數(shù)時最常犯的錯誤就是漏找,即找不全。學(xué)生怎樣按一定順序找全因數(shù)這也正是本課教學(xué)的難點(diǎn)。所以在學(xué)生交流匯報時,我結(jié)合學(xué)生所敘思維過程,相機(jī)引導(dǎo)并形成有條理的板書,如:36÷1=36,36÷2=18,36÷3=12,36÷4=9。

  這樣的板書幫助學(xué)生有序的思考,形成明晰的解題思路的作用是毋庸質(zhì)疑的。教師能像教材中那樣一頭一尾地成對板書因數(shù),這樣既不容易寫漏,而且學(xué)生么隨著流程的進(jìn)行,勢必會感受到越往下找,區(qū)間越小,需要考慮的數(shù)也就越少。當(dāng)找到兩個相鄰的自然數(shù)時,他們自然就不會再找下去了。書寫格式這一細(xì)節(jié)的教學(xué),既避免了教師羅嗦的講解,又有效突破了教學(xué)難點(diǎn),我相信像這樣潤物無聲的細(xì)節(jié),無論于學(xué)生、于課堂都是有利無弊的

  由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動地接受。教學(xué)之前我知道這節(jié)課時間會很緊,所以在備課的時候,我認(rèn)真鉆研了教材,仔細(xì)分析了教案,看哪些地方時間安排的可以少一些,所以我在總結(jié)倍數(shù)的特征,這一環(huán)節(jié)里縮短出示時間,直接以3個小問題出示,,實際效果我認(rèn)為是比較理想的。課上還應(yīng)該及時運(yùn)用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。應(yīng)該及時跟上個性化的語言評價,激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來。

因數(shù)和倍數(shù)教學(xué)反思10

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,在以往的教材中,都是經(jīng)過除法算式來引出整除的概念,而此刻的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,經(jīng)過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。對于學(xué)生來說是比較難掌握的資料。尤其對因數(shù)和倍數(shù)是一對相互依存的`概念,不能單獨(dú)存在,不是很好理解。我經(jīng)過生活與數(shù)學(xué)之間的聯(lián)系,幫忙學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意舉一些生活中的實例來幫忙學(xué)生對相互依存的理解,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的教學(xué),我特別注意下頭幾個細(xì)節(jié)來幫忙學(xué)生理解因數(shù)和倍數(shù)的概念。

  1、是我上課時特別注意讓學(xué)生明白什么情景下才能討論因數(shù)和倍數(shù)的概念。

  2、是要學(xué)生注意區(qū)分乘法算式中的"因數(shù)"和本單元中的"因數(shù)"的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對"積"而言的,與"乘數(shù)"同義,能夠是小數(shù),而后者是相對于"倍數(shù)"而言的,兩者都只能是整數(shù)。

  3、是要注意區(qū)分"倍數(shù)"與前面學(xué)過的"倍"的聯(lián)系和區(qū)別。"倍"的概念比"倍數(shù)"要廣。能夠說"15是3的倍數(shù)",也能夠說"1。5是0。3的5倍",但我們只能說"15是3的倍數(shù)",卻不能說"1。5是0的倍數(shù)"。在課堂中反復(fù)強(qiáng)調(diào),幫忙學(xué)生認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了。

因數(shù)和倍數(shù)教學(xué)反思11

  問題提出:

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課。數(shù)學(xué)概念是抽象與具體、各別與一般的辨證統(tǒng)一。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除,在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。人教版新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。新教材這樣編排有利于教材結(jié)構(gòu)與學(xué)生的認(rèn)知結(jié)構(gòu)產(chǎn)生同化,有利于學(xué)生主動構(gòu)建新知;谛陆滩膸淼膬(yōu)勢,我選擇了《因數(shù)和倍數(shù)》一課。

  案例概述:

  《因數(shù)和倍數(shù)》第一稿

  “興趣是最好的老師”。在初步設(shè)計課時,我從學(xué)生喜聞樂見的趣味成語導(dǎo)入,并通過成語展開教學(xué):

  一、成語引入

  課件出示:()面()方()光()色舉()反()

  二、探究因數(shù)和倍數(shù)的意義

  (一)四面八方

  1.探究8的因數(shù)

 。1)板書:4×2=8這是一個乘法算式,在數(shù)學(xué)上這幾個數(shù)就具備了一種關(guān)系。這時4就是8的因數(shù)(過去叫約數(shù)),8是4的倍數(shù)。(指名說,板書)

  因數(shù)和倍數(shù)就是今天我們要研究的內(nèi)容。

 。2)2呢?相鄰兩個同學(xué)互相說一說。

 。3)8的因數(shù)只有2和4嗎?

 。4)學(xué)生找8的因數(shù)還有1和8。(小組說1和8之間的關(guān)系)

 。5)你能在練習(xí)紙上寫出8的因數(shù)嗎?。指名上臺寫(評價寫的方法)

 。6)畫集合圖表示8的因數(shù)。

  2.探究8的倍數(shù)

 。1)我們找出8的因數(shù)了,那8的倍數(shù)有哪些數(shù)呢?你能說一個嗎?

 。2)在練習(xí)本上寫出8的倍數(shù)。指名上臺寫。(寫得完嗎?怎么辦?)

 。3)那找8的倍數(shù)你有什么小竅門嗎?

 。ǘ┪骞馐

  1.根據(jù)剛才大家研究8的經(jīng)驗,再來研究10,找出10的因數(shù)和倍數(shù)。你行嗎?(學(xué)生自己寫,指名板演)

  2.你是怎樣找出10的因數(shù)(倍數(shù))?(課件出示,板書)

 。ㄈ┡e一反三

  1.研究了8和10,其它數(shù)還行嗎?

  出示:你能從中選兩個數(shù),說一說誰是誰的因數(shù)?誰是誰的倍數(shù)嗎?

  3.5.18.20.36

  2.剛才老師在聽的時候,發(fā)現(xiàn)有好幾個數(shù)都是36的因數(shù),你發(fā)現(xiàn)了嗎?在這里36的因數(shù)都有誰呢?

  3.你能把36的因數(shù)全都找出來嗎?(學(xué)生在練習(xí)紙上獨(dú)立寫出)

  4.匯報。(評價方法)

  5.學(xué)習(xí)到這兒,你有什么發(fā)現(xiàn)嗎?(課件出示)

  一個數(shù)的'因數(shù)的個數(shù)是有限的,最小的因數(shù)是1,最大的因數(shù)是它本身。

  一個數(shù)的倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身。

  6.我們說的數(shù)是什么樣的數(shù)?

 。ㄕn件出示)為了方便,在研究因數(shù)和倍數(shù)時,我們所說的數(shù)指的是整數(shù)(一般不包括0)。

  三、鞏固深化

  1.向自己挑戰(zhàn):用今天學(xué)的知識介紹一下你自己。(指名說,組內(nèi)介紹)

  2.“找朋友”游戲。

  3.介紹“完美數(shù)”。

  教后反思:

  上完課之后,我感到有很多不足之處,聽課領(lǐng)導(dǎo)和老師也給我提出了中肯的意見和建議,存在問題主要有:

  1.導(dǎo)入環(huán)節(jié)的這幾個趣味成語,學(xué)生很容易猜出,對于激發(fā)學(xué)生的興趣效果不是很明顯。

  2.由于在教學(xué)設(shè)計中沒有考慮到因數(shù)和倍數(shù)之間相互依存的關(guān)系,所以學(xué)生理解得不是很深刻,這也導(dǎo)致了出現(xiàn)“2是因數(shù),8是倍數(shù)”這樣的情況。

  3.在研究因數(shù)的方法上,學(xué)生體會得不很深刻,掌握得不很扎實。整節(jié)課學(xué)生的思維能力沒有得到有效鍛煉和提高,尤其使學(xué)生能有序地找出一個數(shù)的因數(shù)這一環(huán)節(jié)設(shè)計上,選擇的數(shù)偏大(36),因數(shù)個數(shù)比較多,對學(xué)生來說有一些難度,導(dǎo)致了這一環(huán)節(jié)層次不清晰,學(xué)生也不能夠有效地掌握找一個數(shù)因數(shù)的方法。

因數(shù)和倍數(shù)教學(xué)反思12

  《倍數(shù)和因數(shù)》,由于之前沒上過這冊內(nèi)容,在看完教材后就和同組的老師說,這個內(nèi)容好像挺簡單的。不過上完這節(jié)課后這個想法卻煙消云散,根本沒有想象的那么容易上,而且在課堂中存在了很多在預(yù)設(shè)中沒有想到的問題,下面對自己的課堂做一些反思:

  1.在第一個環(huán)節(jié)認(rèn)識倍數(shù)和因數(shù)的意義中,首先讓學(xué)生用12個同樣大小的小正方形擺成一個長方形,并用乘法算式來表示你是怎么擺的,有幾種不同的擺法?通過讓學(xué)生動手操作實踐,體現(xiàn)了以學(xué)生為本,而且能喚醒學(xué)生已有的知識經(jīng)驗,抽象為具體討論的數(shù)學(xué)問題。在抽象出三個不同的乘法算式后,我以第一個乘法算式4×3=12為例,介紹倍數(shù)和因數(shù)的關(guān)系,本來以為說:“4和3是12的因數(shù),12是4和3的倍數(shù)”應(yīng)該是很簡單的兩句話,學(xué)生應(yīng)該會說,可是當(dāng)請學(xué)生來自己選擇一個乘法算式來說一說時,好幾個學(xué)生卻被卡住了,還有的`說成了4是12的倍數(shù)。

  針對學(xué)生出現(xiàn)的問題,我覺得可能是自己在介紹時運(yùn)用的不到位,一個是比較小,后面的同學(xué)都沒能看清楚;另一方面我預(yù)想的比較簡單,所以說了一遍后也沒請學(xué)生再復(fù)述一遍。在說到“誰是誰的倍數(shù),誰是誰的因數(shù)”時應(yīng)該在中相繼出示這兩句話,這樣的話讓學(xué)生看著說印象會更深刻,相信學(xué)生說的也會比較好。

  2。第二個環(huán)節(jié)是探求找一個數(shù)的倍數(shù)的方法,從上一個環(huán)節(jié)我最后出示的除法算式中引入:我們知道了18是3的倍數(shù),那3的倍數(shù)是不是只有18呢?通過疑問來激發(fā)學(xué)生找出3的倍數(shù)有哪些?學(xué)生很快能找到,但是并沒有找全,于是再問,那又什么辦法把3的倍數(shù)找全呢?學(xué)生自然想到去乘1,乘2,乘3……,也就按順序找到了3的倍數(shù)。在分別找到了2和5的倍數(shù)后我問學(xué)生:觀察上面這幾個例子,你有什么發(fā)現(xiàn)?請了好幾個學(xué)生都沒能找到,最后還是老師告訴了學(xué)生倍數(shù)最小是?最大呢?

  針對最后請學(xué)生找一找發(fā)現(xiàn)倍數(shù)的共同特點(diǎn)這一問題,我覺得我在設(shè)計時問題提得太大,太籠統(tǒng)。學(xué)生聽到問題后可能無從下手,不知道該找什么?梢詥枺簞偛耪伊2,3,5的倍數(shù),觀察這幾個數(shù)的倍數(shù),他們有什么共同特點(diǎn)?這樣學(xué)生就會比較有針對性地去尋找結(jié)果。

  3。第三個環(huán)節(jié)是探求找一個數(shù)因數(shù)的方法,找一個數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn),如何做到既不重復(fù)又不遺漏地找一個數(shù)的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有是一定困難的,而這個環(huán)節(jié)我處理的也不到位,學(xué)生對找一個數(shù)因數(shù)的方法掌握的不夠好。

  我一開始設(shè)計請學(xué)生自主找36的因數(shù),在巡視時發(fā)現(xiàn)有一部分學(xué)生沒有頭緒,無從下手,時間倒是花去了不少。所以我覺得是否可以先從12下手,因為前面一開始已經(jīng)找過12的因數(shù)了,如果這里能用12做一下鋪墊,可能找36的因數(shù)時就會好一些。

  在學(xué)生自主探索完36的因數(shù)有哪些后,交流不同學(xué)生的結(jié)果,有一位出現(xiàn)了1,36;2,18;3,12;4,9;6,6我就問你是怎么找到的?學(xué)生說是用除法找到的,于是就用36分別去除1,2,3……得到了36的因數(shù)。其實這里除了用除法來找之外,還可以用乘的方法來找,而乘的方法似乎對于學(xué)生來說在找得時候還更簡單一點(diǎn)。更重要的是我覺得一對對的找對于找全一個數(shù)的因數(shù)是一個很重要的方法,而我卻把這個方法忽略了,所以學(xué)生對于找一個數(shù)的因數(shù)的方法不夠深刻,在練習(xí)中也發(fā)現(xiàn)做的不理想。

  4。第四個環(huán)節(jié)是鞏固練習(xí),我設(shè)計了2個小游戲。一個是看誰反應(yīng)快,符合要求的請學(xué)生起立,這個游戲?qū)W生參與面廣,學(xué)生也感興趣,還從中發(fā)現(xiàn)了找誰的學(xué)號是幾的因數(shù),1每次都會起立,就更好的鞏固了一個數(shù)的因數(shù)最小是1。但是也有個別學(xué)生反應(yīng)比較慢。第二個小游戲是猜一猜老師的手機(jī)號碼是多少?但是由于前面時間用的比較多,所以沒來得及做。

  原本認(rèn)為簡單的課卻一點(diǎn)都不簡單,每個細(xì)小環(huán)節(jié)的把握都要求我去仔細(xì)的鉆研教材,設(shè)計好每一步,這樣才能上好一節(jié)課。

因數(shù)和倍數(shù)教學(xué)反思13

  這個單元課時數(shù)比較多,對于學(xué)生數(shù)感的要求比較高,對于學(xué)生觀察本事,比較本事,推理本事的培養(yǎng)是個很好的訓(xùn)練。經(jīng)過一個單元的教學(xué),發(fā)現(xiàn)學(xué)生在以下知識點(diǎn)的學(xué)習(xí)和掌握上還存在一些問題:

  1、最大公因數(shù)和最小公倍數(shù)

  教學(xué)中,我讓學(xué)生經(jīng)歷了三種方法:法一是先找各數(shù)的因數(shù)(或倍數(shù)),再找兩個數(shù)的公因數(shù)(或公倍數(shù)),最終再找最大公因數(shù)和最小公倍數(shù);二是介紹短除法;三是對于特殊關(guān)系的數(shù)(倍數(shù)關(guān)系或互質(zhì)數(shù))直接根據(jù)規(guī)律寫結(jié)果。根據(jù)復(fù)習(xí)和練習(xí)反饋,發(fā)現(xiàn)學(xué)生對數(shù)的感覺比較欠缺,特殊關(guān)系的數(shù)不容易看出來,且兩個概念有時還會出現(xiàn)混淆情景,也就是對因數(shù)和倍數(shù)的理解不夠透徹與深刻。如果學(xué)生對找最大公因數(shù)和最小公倍數(shù)學(xué)不扎實,將直接影響到后面的約分和通分。所以我準(zhǔn)備在平時每節(jié)課都有三到五個訓(xùn)練,并進(jìn)行專項過關(guān)。在應(yīng)用這個知識解決實際問題時,有少數(shù)后進(jìn)生比較難以理解,需要輔助圖形來分析,也需要一個時間的積淀過程。

  2、質(zhì)數(shù)合數(shù)與奇數(shù)偶數(shù)

  這四個概念按照兩個不一樣的標(biāo)準(zhǔn)分類所得。學(xué)生在分類思考時對概念的理解比較清晰,但混同在一齊容易出現(xiàn)概念的'交叉,如2既是質(zhì)數(shù)又是偶數(shù),9既是合數(shù)又是奇數(shù)。

  3、235倍數(shù)的特征

  如果單獨(dú)讓學(xué)生去說去確定一個數(shù)是不是235的倍數(shù),學(xué)生比較清楚,但在靈活應(yīng)用時就比較遲鈍,特別是用短除法尋找公因數(shù)時,不能很快的進(jìn)行反應(yīng),數(shù)的感覺不佳。

  以上是本單元學(xué)生在學(xué)習(xí)過程中的主要障礙,數(shù)感的培養(yǎng)需要一個過程,而概念的理解加深還需要平時不斷的訓(xùn)練。多給學(xué)生一點(diǎn)耐心,再堅持一份恒心,相信學(xué)生們會有提高,會有改變。

因數(shù)和倍數(shù)教學(xué)反思14

  《因數(shù)和倍數(shù)》這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。

  同時這部分內(nèi)容是比較重要的,為五年級的最小公倍數(shù)和最大公因數(shù)的學(xué)習(xí)奠定了基礎(chǔ)。

  本節(jié)可充分發(fā)揮學(xué)生的主體性,讓每個學(xué)生都能參加到數(shù)學(xué)知識的學(xué)習(xí)中去,調(diào)動學(xué)生學(xué)習(xí)的興趣和主動性。本節(jié)課主要從以下幾個方面進(jìn)行教學(xué)的。

  一:動手操作,探究方法.

  我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,變抽象為具體。

  二、倍數(shù)教學(xué),發(fā)現(xiàn)特點(diǎn)。

  利用乘法算式,讓學(xué)生找出3的倍數(shù),這里讓學(xué)生理解:

  (1)3的.倍數(shù)應(yīng)該是3與一個數(shù)相乘的積。

  (2)找3的倍數(shù)是要有一定的順序,依次用1、2、3……與3相乘。有了找3倍數(shù)的方法,在上學(xué)生找出2和5的倍數(shù)。這樣即鞏固對例題的理解,同時也為接下來的討論倍數(shù)的特點(diǎn)奠定基礎(chǔ)。

  最后讓學(xué)生通過討論發(fā)現(xiàn):

 。1)一個數(shù)的倍數(shù)個數(shù)是無限的(要用省略號)。

 。2)一個數(shù)的最小倍數(shù)是本身,沒有最大的倍數(shù)。

  三、因數(shù)教學(xué),發(fā)現(xiàn)特點(diǎn)。

  找一個數(shù)因數(shù)的方法是本節(jié)課的難點(diǎn)。找一個數(shù)的因數(shù)的方法和倍數(shù)相似,大部分學(xué)生都用乘法算式尋找一個數(shù)的因數(shù),這里教師可以通過幾到有序排列的除法算式啟發(fā)學(xué)生進(jìn)一步理解。強(qiáng)調(diào)有序(從小到大),不重復(fù)、不遺漏。隨后讓學(xué)生找出15、16的因數(shù)有那些。最后通過比較討論讓學(xué)生得出因數(shù)的特點(diǎn):

  (1)一個數(shù)因數(shù)的個數(shù)是有限的。

  (2)一個數(shù)最小的因數(shù)是1,最大的因數(shù)是本身。(讓學(xué)生明白所有的數(shù)都有因數(shù)1).

  四、練習(xí)反饋情況

  從學(xué)生的作業(yè)情況來看,大部分學(xué)生掌握的還是不錯的,有部分基礎(chǔ)差的學(xué)生,有如下幾點(diǎn)錯誤出現(xiàn):

  1、倍數(shù)沒有加省略號。

  2、分不清倍數(shù)和因數(shù),倍數(shù)也加省略號,因數(shù)也加省略號。

  3、因數(shù)有遺漏的情況。從以上情況來看,在今后的教學(xué)中要多關(guān)注基礎(chǔ)比較差的學(xué)生,注意補(bǔ)差工作;同時要注意教學(xué)中細(xì)節(jié)的處理。

因數(shù)和倍數(shù)教學(xué)反思15

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》倡導(dǎo)“自主——合作——探究”的學(xué)習(xí)方式,強(qiáng)調(diào)學(xué)習(xí)是一個主動建構(gòu)的過程。因此,應(yīng)注重培養(yǎng)學(xué)生學(xué)習(xí)的獨(dú)立性和自主性,讓學(xué)生在教師的指導(dǎo)下主動地參與學(xué)習(xí),親歷學(xué)習(xí)過程,從而學(xué)會學(xué)習(xí)。

  1、以“理”為基點(diǎn),將學(xué)生帶入新知的學(xué)習(xí)。

  概念教學(xué)重在“理”。學(xué)生理解“因數(shù)”、“倍數(shù)”概念有個逐步形成的過程,為了促進(jìn)這一意識建構(gòu),我先讓學(xué)生通過自己已有的認(rèn)知結(jié)構(gòu),經(jīng)過“排列整齊的隊形——形成乘法算式——抽象出倍數(shù)因數(shù)概念——再由乘法或除法算式——深化理解”,使學(xué)生在輕松、簡約并充滿自信中學(xué)習(xí)新知,在數(shù)與形的結(jié)合中,深刻體驗因數(shù)倍數(shù)的概念。

  2、以“序”為站點(diǎn),培養(yǎng)學(xué)生的思維方式。

  概念形成得在“序”。學(xué)生對于概念的形成是一個由表及里、由形象到抽象的過程。當(dāng)學(xué)生對概念有了初步認(rèn)識后,讓學(xué)生探索如何找一個數(shù)的倍數(shù)的因數(shù),這既是對概念內(nèi)涵的深化,也是對概念外延的探索。這時思維和排列上的有序性是教學(xué)的關(guān)鍵,也是本節(jié)課的深度之一。在教學(xué)時,分為兩個層次:第一個層次是讓學(xué)生在已有的知識基礎(chǔ)上找12的因數(shù),并在交流中,經(jīng)歷了一個從無序到有序、從把握個別到統(tǒng)攬整體、從思維混沌走向思維清晰的過程。抓住教學(xué)的難點(diǎn)“如何找全,并且不重復(fù)不遺漏”,讓學(xué)生自由地說,再引導(dǎo)學(xué)生說出想的`過程,并加以調(diào)整。表面看來僅僅是組合的變換,實質(zhì)上是思維的提高和方法的優(yōu)化,并讓學(xué)生在對比中感受“一對一對”找因數(shù)的方法,經(jīng)歷了互相討論、相互補(bǔ)充、對比優(yōu)化的過程。第二個層次是在學(xué)生已經(jīng)有了探索一個數(shù)因數(shù)的方法,具備了一定有序思考的能力之后,啟發(fā)學(xué)生“能像找因數(shù)那樣有序的找一個數(shù)的倍數(shù)”,提高了學(xué)生的思維能力。

  3、以“思”為落腳點(diǎn),培養(yǎng)學(xué)生發(fā)現(xiàn)思考的能力。

  概念的生成重在“思”,規(guī)律的形成重在“觀察”,教師如果能在此恰到好處的“引導(dǎo)”,一定會讓學(xué)生收獲更多,感悟更多。因此設(shè)計時,我借助了“找自己學(xué)號的因數(shù)和倍數(shù)”這個活動,在大量的有代表性的例子面前,在學(xué)生親自的嘗試中,在有目的的對比觀察中,學(xué)生的思維被逐步引導(dǎo)到了最深處,知道了一個數(shù)的最大因數(shù)和最小倍數(shù)都是它本身,反過來也是正確的。教師在這里提供了有效的素材,可操作的素材,促使學(xué)生對所學(xué)的概念進(jìn)行了有意義的建構(gòu),促進(jìn)和發(fā)展了他們的思維。

【因數(shù)和倍數(shù)教學(xué)反思】相關(guān)文章:

因數(shù)和倍數(shù)教學(xué)反思04-11

因數(shù)和倍數(shù)教學(xué)反思通用04-07

通用版因數(shù)與倍數(shù)教學(xué)反思04-06

倍數(shù)與因數(shù)的教學(xué)反思(通用26篇)02-20

五年級下冊因數(shù)和倍數(shù)教學(xué)反思04-13

《公倍數(shù)和最小公倍數(shù)》教學(xué)反思07-15

《公倍數(shù)和最小公倍數(shù)》教學(xué)反思13篇(必備)07-15

倍數(shù)的特征教學(xué)反思04-21

公倍數(shù)的教學(xué)反思12-09

2和5的倍數(shù)的特征教學(xué)反思(通用10篇)11-24