国产精品入口免费视频_亚洲精品美女久久久久99_波多野结衣国产一区二区三区_农村妇女色又黄一级真人片卡

勾股定理教學反思

時間:2024-11-08 17:00:20 教學反思 我要投稿

勾股定理教學反思

  作為一位剛到崗的人民教師,課堂教學是我們的工作之一,寫教學反思可以快速提升我們的教學能力,快來參考教學反思是怎么寫的吧!下面是小編幫大家整理的勾股定理教學反思,僅供參考,希望能夠幫助到大家。

勾股定理教學反思

勾股定理教學反思1

  本節(jié)課的數(shù)學設計主要是從面對全體學生,針對學生知識水平、生活環(huán)境、思維特點、認知風格的差異等方面進行編寫講學稿的;它的主要目的是讓學生應用所學的勾定理解決現(xiàn)實生活中的實際問題。由于學生才剛剛掌握勾股定理,根據(jù)教材,單刀直入,要求學生運用其定理解決生活中的實際問題,對部分學生來說還存在著一定的困難。故我們初二級組全體數(shù)學老師,對教材知識內容進行了有效的整合,從中提煉教學資源,把本章的教學內容進行了重建組合,使之符合我們的學生的認知特點,心理特點級學習特點,讓學生學起來輕松,運用起來靈活。本節(jié)課主要是圍繞“設置問題情境――建立教學模型――解釋――應用及拓展”這一主線展開教學工作的。其閃光點主要有:

  一、創(chuàng)設問題情境,引導學生積極思考,激發(fā)其探究欲望。

  激發(fā)學生探究問題、解決問題,首先要激發(fā)其探究的興趣,欲想要學生感興趣,首先教師必須先創(chuàng)設與學習內容緊密相關的問題情境,能引導學生進行“數(shù)學思考”。本節(jié)課一開始,教師拿來一塊木板表演從一間小小的門框穿過,橫著進不了,豎著也過不了,問學生怎么辦?瞬間,木板過門框問題成了大家討論的焦點;同時引導學生,建立數(shù)學模型,突破將形轉化為數(shù)這一思想轉變難點。

  二、能調動全體學生參與教學活動。

  課堂教學活動形式多樣化,有個人思考,有小組活動,有全班交流,讓學生進行分析歸納,教師鼓勵學生盡量用自己的語言表達自己的發(fā)現(xiàn)。感悟“圖形”與“數(shù)量”之間的相互關系,將教學內容生活化,動態(tài)化,使學生更真切地感受到勾股定理的'使用性,整節(jié)課師生之間均處與主動狀態(tài)。

  三、講學稿的設計,不拘泥于教材,吃透教材,敢于創(chuàng)新。

  講學稿中所設計的例題或習題,富于生活氣息。例、木板過門框、折斷的樹,電視機的大少等,都與現(xiàn)實生活有關。其實是告訴學生數(shù)學是為生活服務的,同時,數(shù)學也是來自于生活。

  四、教學目標明確,能突破教學重點、難點,教學程序有條不紊,思路清晰,或活而不亂。教師具有一定的調控能力,能輕松駕御課堂,應付自如。學生在課堂內能正確完成預設的練習。

  五、注重知識的前后連貫性,練習具有一定的層次性,使全體學生學有所用,課后拓展題,拓寬了學生的思路,培養(yǎng)了學生的審題能力,挖掘學生的潛能。

  上完一節(jié)課下來,總感到有點遺憾。不足之處說出來與大家共同探討。例題的解答板書教師應在黑板上一步一步示范,盡量少用多媒體示范,因為幻燈片一會兒就換了,不利于學困生學習;講學稿的編設內容過于簡單基礎化,不適合優(yōu)生的培養(yǎng),課堂中集體回答問題較多,學生單獨思考、答題、獨立完成作業(yè)的機會不多;課后作業(yè)與堂上練習拓展不夠深,有待改善。但愿我們能互相學習,取長補短,共同進取。

勾股定理教學反思2

  三角學里有一個很重要的定理,我國稱它為勾股定理,又叫商高定理。因為《周髀算經》提到,商高說過"勾三股四弦五"的話。

  實際上,它是我國古代勞動人民通過長期測量經驗發(fā)現(xiàn)的。他們發(fā)現(xiàn):當直角三角形短的直角邊(勾)是3,長的直角邊(股)是4的時候,直角的對邊(弦)正好是5。而。

  這是勾股定理的一個特例。以后又通過長期的測量實踐,發(fā)現(xiàn)只要是直角三角形,它的三邊都有這么個關系。即

  與它們相當?shù)恼麛?shù)有許多組

  《周髀算經》上還說,夏禹在實際測量中已經初步運用這個定理。這本書上還記載,有個叫陳子的數(shù)學家,應用這個定理來測量太陽的高度、太陽的直徑和天地的`長闊等。

  5000年前的埃及人,也知道這一定理的特例,也就是勾3、股4、弦5,并用它來測定直角。以后才漸漸推廣到普遍的情況。

  金字塔的底部,四正四方,正對準東西南北,可見方向測得很準,四角又是嚴格的直角。而要量得直角,當然可以采用作垂直線的方法,但是如果將勾股定理反過來,也就是說:只要三角形的三邊是3、4、5,或者符合的公式,那么弦邊對面的角一定是直角。

  到了公元前540年,希臘數(shù)學家畢達哥拉斯注意到了直角三角形三邊是3、4、5,或者是5、12、13的時候,有這么個關系:,。

  他想:是不是所有直角三角形的三邊都符合這個規(guī)律?反過來,三邊符合這個規(guī)律的,是不是直角三角形?

  他搜集了許多例子,結果都對這兩個問題作了肯定的回答。他高興非常,殺了一百頭牛來祝賀。

  以后,西方人就將這個定理稱為畢達哥拉斯定教學反思《《勾股定理》教學反思》一文

勾股定理教學反思3

  《勾股定理》是人教版教材八年級數(shù)學(下)的內容,第一課時的教學重點是讓學生經歷勾股定理的探索和證明過程,了解勾股定理的背景知識,在學習知識的同時,感受勾股定理的豐富文化內涵,激發(fā)學生的學習興趣,對學生進行思想品德教育。

  針對教材的任務要求,我是按照如下的教學流程進行的:

  一。欣賞圖片引入新課,激發(fā)學生學習興趣

  通過欣賞20xx年在我國北京召開的國際數(shù)學家大會的會徽圖案,引出“趙爽弦圖”,讓學生了解我國古代輝煌的數(shù)學成就,引入課題。

  接下來,讓學生欣賞傳說故事:相傳2500年前,畢達格拉斯在朋友家做客時,發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關系。通過故事使學生明白:科學家的'偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學,我們應該學會觀察、思考,將學習與生活緊密結合起來。

  這樣,一方面激發(fā)學生的求知欲望,另一方面,也對學生進行了學習方法指導和解決問題能力的培養(yǎng)。

  二。動手探究,得出猜想

  通過對地板圖形中的等腰直角三角形三邊關系到一般直角三角形中三邊關系的探究,讓同學們體驗由特殊到一般的探究過程,學習這種研究方法。

  在這一過程中,學生充分利用學具去嘗試解決,力求讓學生自己探索,先在小組內討論,然后在全班討論,盡量學習更多的方法。

  三。動手實踐,得出定理

  先了解趙爽的證明思路,然后讓學生利用學具自己動手剪拼,并利用圖形進行證明。

  由于難度比較大,組織學生開展小組合作學習。教師要巡回輔導,給予學生必要的幫助。

勾股定理教學反思4

  本節(jié)課主要通過勾股定理的證明探索,使學生進一步理解和掌握勾股定理。通過利用質疑、拼圖觀察、思考、猜想、推理論證這一過程,培養(yǎng)學生探求未知數(shù)學知識的能力和方法,培養(yǎng)學生求異思維能力、認知能力、觀察能力和獨立實踐能力。學生獨立或分組進行拼圖實驗,教師組織學生在實驗過程中發(fā)現(xiàn)的有價值的實驗結果進行交流和展示。本節(jié)課的過程由激趣、質疑、實驗、求異、探索、交流、延伸組成。

  本節(jié)課的成功之處:

  1、創(chuàng)設情景,實例導入,激發(fā)學生的學習熱情。

  2、由于實現(xiàn)了教師角色的轉變,教法的創(chuàng)新,師生的平等,氣氛的活躍,學生積極參加。

  3、面向全體學生,以人為本的教育理念落實到位。整節(jié)課都是學生自主實驗、自主探索,自主完成由形到數(shù)的轉化。學生勇于上講臺展示研究成果,教師只是起到組織、引導作用。

  4、通過學生動手實驗,上臺發(fā)言,展示成果,體驗了成功的喜悅。學生的自信心得到培養(yǎng),個性得到張揚。通過當場展示,讓學生體會到動手實踐在解決數(shù)學問題中的重要性,同時也讓學生體會到用面積來驗證公式的直觀性、普遍性。

  5、學生的.研究成果極大地豐富了學生對勾股定理的證明的認識,學生從中獲得利用已知的知識探求數(shù)學知識的能力和方法。這對學生今后的學習和將來的發(fā)展是大有裨益的。同時驗證勾股定理的證明的探究,使學生形成一種等積代換的思想,為今后的學習奠定基礎。

  本節(jié)課的不足之處及改進思路:

  1、小部分能力基礎和能力都比較差的學生在探索過程中無所事事,因此教師應該在課前對不同層次的學生提出不同的要求,讓每個學生多清楚地知道這節(jié)課自己的任務是什么。

  2、本節(jié)課拼圖驗證的方法是以前學生很少接觸的,所以在探索過程中很多學生都顯得有些吃力。所以教師在講方法一時,應該先介紹這種證明方法以及思路,讓學生模仿第一種方法的基礎上,能輕松地總結出第二種方法,從而產生去探索更多方法的興趣和動力,有利于學生的數(shù)學思維的提升。

  3、對學生的人文教育和愛國教育不夠。很多學生在探索過程中遇到困難時,選擇放棄或等別人的答案。教師此時應該注意引導學生要勇于克服困難,主動進行探索,提高了自身的推理能力和創(chuàng)新精神。同時教師也要不斷滲透愛國教育,培養(yǎng)學生的民族自豪感和愛國熱情。

  在我們的數(shù)學教學中,活動課是不可忽視的內容。在這個探索的過程中,學生絕大多數(shù)是不會創(chuàng)造或發(fā)明什么的,這是一個素質的表現(xiàn)和培養(yǎng)過程。學生得到什么結果是次要的,重要的是使學生的素質和能力得到培養(yǎng)。這是中學數(shù)學活動課的價值取向。

勾股定理教學反思5

  一、教師我的體會:

  ①、我根據(jù)學生實際情況認真?zhèn)湔n這節(jié)課,書本總共兩個例題,且兩個例題都很難,如果一節(jié)課就講這兩題難題,那一方面學生的學習效率會比較低,另一方面會使學生畏難情緒增加。所以,我簡化教材,使教材易于操作,讓學生易于學習,有利于學生學習新知識、接受新知識,降低學習難度。

  把教材讀薄,②、除了備教材外,還備學生。從教案及授課過程也可以看出,充分考慮到了學生的年齡特點:對新事物有好奇心,但對新知識的鉆研熱情又不夠高,這樣,造成教學難度較大,為了改變這一狀況,在處理教材時,把某些數(shù)學語言轉換成通俗文字來表達,把難度大的運用能力降低為難度稍細的理解能力,讓學生樂于面對奧妙而又有一定深度的數(shù)學,樂于學習數(shù)學。

  ③、新課選用的例子、練習,都是經過精心挑選的,運用性強,貼近生活,與生活實際緊密聯(lián)系,既達到學習、鞏固新知識的目的,同時,又充分展現(xiàn)出數(shù)學教學的重大特征:數(shù)學源于生活實際,又服務于生活實際。勾股定理源于生活,但同時它又能極大的為生活服務。

 、堋⑹褂枚嗝襟w進行教學,使知識顯得形象直觀,充分發(fā)揮現(xiàn)代技術作用。

  二、學生體會:

  課前,我們也去查閱了一些資料,關于勾股定理的證明以及有關的.一些應用,通過這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來源于生活,我們的幾何圖形和幾何計算對于勾股定理來說非常廣泛,而且以后更要用好它。對于勾股定理都應用時,我覺得關鍵是找到相關的三角形,并且分清直角邊或斜邊,靈活機智地進行計算和一些推理。另外與同學間在數(shù)學課上有自主學習的機會,有相互之間的討論、爭辯等協(xié)作的機會,在合作學習的過程中共同提高我覺得都是難得的機會。鍛煉了能力,提高了思維品質,并且勾股定理的應用中我覺得圖形很美,古代的數(shù)學家已經有了很好的研究并作出了很大的貢獻,現(xiàn)代的藝術家們也在各方面用到很多,同時在課堂中漸漸地培養(yǎng)了我們的數(shù)學興趣和一定的思維能力。

  不過課堂上老師在最后一題的畫圖中能放一放,讓我們有時間去思考怎么畫,那會更好些,自然思維也得到了發(fā)展。課上老師鼓勵我們嘗試不完善的甚至錯誤的意見,大膽發(fā)表自己的見解,體現(xiàn)了我們是學習的主人。數(shù)學課堂里充滿了智慧。

勾股定理教學反思6

  通過本節(jié)課的教學,我采用了合作探究、操作體驗的教學方式。在課堂教學中,首先創(chuàng)設情境,提出問題;再讓學生通過做一做、測量、判斷、找規(guī)律,猜想出一般性的結論;然后由學生想、做、量一量、猜一猜、去驗證結論……使學生自始至終感悟、體驗、嘗試到了知識的生成過程,品嘗著成功后帶來的樂趣。這不僅使學生學到獲取知識的思想和方法,同時也體會到在解決問題的過程中與他人合作的重要性,而且為學生今后獲取知識以及探索、發(fā)現(xiàn)和創(chuàng)造打下了良好的基礎,更增強了學生敢于實踐、勇于探索、不斷創(chuàng)新和努力學習數(shù)學知識的信心和勇氣。

  要想真正搞好以探究活動,小組合作為主的'課堂教學,必須不斷更新教學觀念,使課堂真正成為學生既能自主探究,師生又能合作互動的場所,培養(yǎng)學生成為既有創(chuàng)新能力,又能夠適應現(xiàn)代社會發(fā)展的公民

  作為教師,在課堂教學中要始終牢記:學生才是學習的主體,學生才是課堂的主體;教師只是課堂教學活動的組織者、引導者與合作者。因此,課堂教學過程的設計,也必須體現(xiàn)出學生的主體性。

勾股定理教學反思7

  本節(jié)課根據(jù)學生的認知結構采用“觀察--猜想--歸納--驗證--應用”的教學方法,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結合的思想。另外,我在探索的過程中補充了一個倒水實驗,(放片子)我個人覺得效果很好,它讓學生深刻的體會到了,不是所有三角形三邊都有a2+ b2= c2的關系,只有直角三角形三邊才存在這種關系,并且實驗很具有直觀性,便于學生理解,而且是在學生的學習疲勞期出現(xiàn),達到了再次點燃學生學習熱情的目的,一舉多得。

  除了探究出勾股定理的內容以外,本節(jié)課還適時地向學生展現(xiàn)勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生愛國熱情,培養(yǎng)學生的民族自豪感和探索創(chuàng)新的精神。

  練習反饋中既有勾股定理的基本應用,還有貼近學生生活的實例,既讓學生感受到學習知識應用于生活的.成就感,又使學生深刻了解勾股定理的廣泛應用。

  讓學生總結本堂課的收獲,從內容,到數(shù)學思想方法,到獲取知識的途徑等方面。給學生自由的空間,鼓勵學生多說。這樣引導學生從多角度對本節(jié)課歸納總結,感悟點滴,使學生將知識系統(tǒng)化,提高學生素質,鍛煉學生的綜合及表達能力。

  作業(yè)為了達到提高鞏固的目的,期望學生能主動地探求對勾股定理更深入的認識、拓展學生的視野。

  通過這節(jié)課,備課、上課后,我個人還有一些困惑,一是問題情境的創(chuàng)設(放片子),原本的意圖是激發(fā)學生的學習興趣,可是感覺學生反映平平。創(chuàng)設什么樣的問題情景更合適?

  二是:探究問題的設計(放片子),本節(jié)課是一節(jié)典型的探究課,如何設計探究問題,才能使學生在探究過程中數(shù)學學習能力得到提高,教學任務順利完成并達到預期效果?

勾股定理教學反思8

  我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學家商高就提出,將一根直尺折成一個直角,如果勾(短直角邊)等于三,股(長直角邊)等于四,那么弦等于五。即“勾三、股四、弦五”。它被記載于我國古代著名的數(shù)學著作《周髀算經》中,在這本書的另一處,還記載了勾股定理的一般形式。中國古代的幾何學家研究幾何是為了實用,是唯用是尚的。在講完《勾股定理逆定理》這節(jié)課后,我的反思如下:

  本節(jié)課的教學目標是:在掌握了勾股定理的基礎上,讓學生如何從三邊的關系來判定一個三角形是否為直角三角形。即:勾股定理的逆定理。

  勾股定理的逆定理的教學設計說明:本教教學設計是圍繞勾股定理的逆定理的證明與應用來展開,結合新課標的要求,根據(jù)我班學生的認知結構與教材地位為了達到本節(jié)課的教學目標,我做了以下設計(也是成功之處):

  一、創(chuàng)設情境,提出猜想達到直觀性的教學要求。讓幾個學生要全班同學前面做一個“數(shù)學實驗”,三條分別為:3,4,5的三角形是一個直角三角形。第二步驟是讓學生畫已知三邊的一定長度的三角形,判斷是不是直角三角形,并分析三邊滿足什么關系條件,同時,引導學生從特殊到一般提出猜想。

  二、將教學內容精簡化。考慮到我所教班級的學生認識水平,做了如下教學設計:⑴將教學目標定為讓學生掌握勾股定理的逆定理。以及逆定理的應用,而對于本課中逆定理的證明。以及其探究都放在一下節(jié)課再進行講解。⑵對于本課中所出現(xiàn)了的逆定理的定義,及其真假性的判斷也簡單化。本節(jié)課也不詳細講。本節(jié)課的的重點放在掌握勾股定理的逆定理,及其應用。從課堂效果來看,這樣的教學設計是合理的,學生較好的掌握了勾股定理的逆定理,所以取得了良好的課堂效果。

  三、應用訓練,鞏固新知為了鞏固新知,靈活運用所學知識解決相應問題,提高學生的分析解題能力,基于對我班的學情分析,為了讓學生都能動起手做,學案的設計上做了很多腳手架,目的就是讓學生能夠按照腳手架的步驟一步步完成,最終也形成了解題的“操作性”。此外,腳手架的設置對我們的中下水平的學生是很多幫助的從課堂上看,他們也能在腳手架的幫助下,完成一定的題目中,而如果沒有的話,這部分學生對一些基本的題都會束手無策。

  四、實行分層教學,讓不同水平的學生在同一課堂都能學好,為此,我設計了三個層次的問題,以達到分層教學目標:第一層次是讓學生直接運用定理判斷三角形是否是直角三角形,掌握定理基本運用;第二層次是強調已知三角形三邊長或三邊關系,就有意識的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應用,又為下一個層次做好了鋪墊;第三層次是靈活運用勾股定理與逆定理解決圖形面積的計算問題。根據(jù)學生原有的認知結構,讓學生更好地體會分割的思想。設計的題型前后呼應,使知識有序推進,有助于學生的.理解和掌握;讓學生通過合作、交流、反思、感悟的過程,激發(fā)學生探究新知的興趣,感受探索、合作的樂趣,并從中獲得成功的體驗。真正體現(xiàn)學生是學習的主人。將目標分層后,我設計的學案里的題目也是相應的進行了分層設計,滿足不同層次的學生的做題要求,達到鞏固課堂知識的目的。最后,布置作業(yè),也是分層布置的,分為三層,對應不同的學生,讓他們的作業(yè)都在他們的能力范圍。

  誠然,這節(jié)課也存在許多不足第一、新課導入部分:存在如下值得改進的地方:①復習舊知部分,復習勾股定理的內容應用了填空的形式,這個形式不是最佳的因為學生書寫勾股定理耗時,既使書寫出來,復習效果也不太好。最佳的應該是以簡單的題目形式來復習勾股定理。這樣快而有效;②如何從復習勾股定理中巧妙的切入本課的主題,過渡語的設置,應該將過渡語言簡單明了,可設計成:怎么從邊的關系來判斷一個三角形是直角三角形呢?這就是本節(jié)課要學習的內容。③導入部分的課時分配估計不足,顯得冗長,也一定程度上造成后面的教學時間緊張。應該對導入部分的時效再進行分析簡化。

  第二存在的問題是:

 。1)腳手架設計的太多,本節(jié)課有一定的腳手架是合適的,太多了,反而不利于學生自己的書寫規(guī)范性,過程的掌握等,(2)練習題題量過大,本節(jié)課的練習題大部分都是重復一些基本的操作,沒有必要太多簡單的題目,可以適當去掉。對于數(shù)字的設計可以更加科學化一點,應該讓學生方便運算和節(jié)省時間。此外,對于層次較要的同學來說,應該設計更多一點綜合性的題目。適當?shù)脑黾右恍┨岣哳},以滿足這一層次的學生的學習練習要求。

  在備每一節(jié)課中,對于課堂的每一個細節(jié),第一刻鐘,第一個教學設計的思考都無不直接影響著你的這一節(jié)課,影響著你的課堂效果。靜心思考,反思整個過程是一種全新的收獲,也是全新的開始,讓自己能夠重新起步,向前。

勾股定理教學反思9

  時光稍縱即逝,轉眼間一個新的學期又要結束了,回顧已逝的教學時光,可謂百味俱全,其間有一節(jié)課我上得最投入、最值得回憶與反思。

  記得那是期末的展示匯報課,(主任說可能會有校外的教師來聽課。)我當時很有壓力,晚上也難以入睡。我選的是《勾股定理》一課。為了上好這節(jié)課,我反復研究了去洋思學習的一些記錄,努力用新理念新手段來打造我的這節(jié)課。當我滿懷信心地上完這節(jié)課時,我心情愉悅,因為我教態(tài)自然得體,與學生合作默契,基本上獲得了教學的成功。

  1、從生活出發(fā)的教學讓學生感受到學習的快樂

  在“勾股定理”這節(jié)課中,一開始引入情景:

  平平湖水清可鑒,荷花半尺出水面。

  忽來一陣狂風急,吹倒荷花水中偃。

  湖面之上不復見,入秋漁翁始發(fā)現(xiàn)。

  花離根二尺遠,試問水深尺若干。

  知識回味:復習勾股定理及它的公式變形,然后是幾組簡單的計算。

  2、走進生活:以裝修房子為主線,設計木板能否通過門框,梯子底端滑出多少,求螞蟻爬的最短距離,這些都是勾股定理應用的典型例題。

  3、名題欣賞:首尾呼應,用“代數(shù)方法”解決“幾何問題”。印度數(shù)學家婆什迦羅(1141—1225年)提出的“荷花問題”比我國的“引葭赴岸”問題晚了一千多年!耙绺鞍丁眴栴},是我國數(shù)學經典著作《九章算術》中的一道名題!毒耪滤阈g》約成書于公元一世紀。該書的第九章,即勾股章,詳細討論了用勾股定理解決應用問題的方法。這一章的第6題,就是“引葭赴岸”問題,題目是:“今有池一丈,葭生其中央,出水一尺。引葭赴岸,適與岸齊。問水深、葭長各幾何?” “荷花問題”的解法與“引葭赴岸”問題一樣。它的出現(xiàn)卻足以證明,舉世公認的古典數(shù)學名著《九章算術》傳入了印度!毒耪滤阈g》中的勾股定理應用方面的內容,涉及范圍之廣,解法之精巧,都是在世界上遙遙領先的,為推動世界數(shù)學的發(fā)展作出了貢獻。鼓勵學生可以自己利用課余時間查閱相關資料,豐富知識。

  4、在教學應用勾股定理時,老是運用公式計算,學生感覺比較厭倦,為了吸引學生注意力,活躍課堂氣氛,拓寬學生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。并且將問題用動畫的形式展現(xiàn)出來,不僅將問題形象化,又提高了學生的學習興趣。同時將實際的'問題轉化為數(shù)學問題的過程用直觀的圖形表示,在降低難度的同時又鼓勵了學生能夠看到身邊的數(shù)學,從而做到學以致用。最后讓學生互相討論,就這樣讓學生在開放自由的情況下解決了該題,同時培養(yǎng)了學生之間的合作。

  5、最后介紹了勾股定理的歷史,并且推薦了一些網站,讓學生下課之后進行查閱、了解。這是為了方便學生到更廣闊的知識海洋中去尋找知識寶藏,利用網絡檢索相關信息,充實、豐富、拓展課堂學習資源,提供各種學習方式,讓學生學會選擇、整理、重組、再用這些更廣泛的資源。這種對網絡資源的重新組織,使學生對知識的需求由窄到寬,有力的促進了自主學習。這樣學生不僅能在課堂上學習到知識,還讓他們有了怎樣學習知識的方法。這就達到了新課標新理念的預定目標。

  通過本節(jié)課的教學,學生在勾股定理的學習中能感受“數(shù)形結合”和“轉化”的數(shù)學思想,體會數(shù)學的應用價值和滲透數(shù)學思想給解題帶來的便利;感受人類文明的力量,了解勾股定理的重要性。真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學習。這堂課將信息技術融入課堂,有利于創(chuàng)設教學環(huán)境,教學模式將從以教師講授為主轉為以學生動腦動手自主研究、小組學習討論交流為主,把數(shù)學課堂轉為“數(shù)學實驗室”,學生通過自己的活動得出結論、使創(chuàng)新精神與實踐能力得到了發(fā)展。不足之處:學生合作意識不強,討論氣氛不夠活躍;計算不熟練,書寫不規(guī)范。

勾股定理教學反思10

  通過復習讓學生充分回憶前面學習的有關三角形的內容,使學生加深對知識的理解,從而為本節(jié)課的學習打下良好的基礎。同時,學生回憶的過程也是一個思考的過程,特別是面積法來驗證勾股定理,是本章教學的難點,對此學生應該先形成一個印象、概念,然后才能學習掌握好。

  已知直角三角形中的兩條直角邊求斜邊,這是上節(jié)課學習的內容。在上節(jié)課學習過程中,學生已經練習過。但為什么本節(jié)課中仍然有部分學生出錯呢?究其原因,是因為上節(jié)課學習的內容太多,方法也較多、較靈活,因而學生對每一個內容與方法都仍是一種感性的認識,而仍沒達到理解掌握的程度。因此,當讓學生自己獨立完成問題時,往往就產生了思維上存在的缺點,從而出現(xiàn)各種錯誤。另一方面,教學中我們往往會采用一種“一問齊答”的問答形式,這樣會容易掩蓋學生的真實想法。其實,在解答此問題時,教師很容易就走進了這樣的問答方式,原因在于我們認為這樣的問題太簡單了,上節(jié)課學生也似學會了,于是便產生了一種忽視的教學。可現(xiàn)實卻往往不是這樣的,我們認為簡單的知識對于學生(特別是基礎較弱的學生)來說,往往是不簡單的。因此,教學中應盡量少用“一問齊答”的欺騙教師的問答方式,讓學生充分發(fā)表自己的意見,同時引導學生分析錯誤,養(yǎng)成反思的意識,只有這樣,才能真正使學生學有所獲。

  同一個問題的不同變式,可以讓學生自我檢查對知識與方法是否能真正達到理解、掌握與運用,從而提高學生學習的自信心。解答這個問題的方法其實就是驗證勾股定理所用到的方法——面積法。在課堂教學之初始讓學生回憶上一堂課的方法,有了一個初步的印象,在這里再提出來時學生就不會感到突然和陌生,達到承上啟下的作用。另一方面,教師在講解問題的解答時,并不是把問題的解答方法與過程全部一下子出來,而是引導學生經過一步步的思考,讓學生自己在思考與感悟中得到問題的解答,這樣可以培養(yǎng)學生思考問題的'方法,提高學生的思維能力。如果此時能對已經解答出來的同學大力表揚,并讓學生引導學生來解答余下的問題,那么效果會更好。

  數(shù)學問題生活化,用數(shù)學知識解決生活中的實際問題,是課程改革后數(shù)學課堂教學必須實施的內容。在解答實際生活中的問題時,關鍵在于把生活問題轉化為數(shù)學問題,讓生活問題數(shù)學化,然后才能得以解決。在這個過程中,很多時候需要教師幫助學生去理解、轉化,而更多時候需要的是學生自己探索、嘗試,并在失敗中尋找成功的途徑。本題教學中,如果能讓學生自己反思答案與方法的合理性,那么效果會更好了。課前預設與課堂生成,這是課程改革以來出現(xiàn)的最多問題之一。課堂教學任務要完成,而課堂又要還給學生,充分發(fā)揮學生的自主性,那么如何處理好這個問題呢?在本課最后的這個環(huán)節(jié)里,如果能引導學生歸納本課學生的方法,特別是面積法,然后再給一個簡單的問題來鞏固,那么效果肯定會比這樣匆匆結束課堂要好。但是,這部分知識內容又什么時候來解決呢?不解決行不行呢?這是課后困擾我的問題。“課堂教學應基于自身班級學生的具體情況,不論是課前預設(備課)還是課堂教學過程,都應以使絕大部分學生能真正學習掌握好為基礎。”經過本節(jié)課的教學后,我自己對有效的課堂產生了一個這樣的認識。在以“知識為中心”還是以“學生學習為中心”的這個問題上,我想應以學生為中心,同時兼顧教學內容的完成,如果發(fā)生矛盾時,那么我想是不是仍應以學生為中心呢?這樣教學任務完成不了怎么辦呢?影響教學進度又怎么辦呢?考試又怎么辦呢?……。其實,歸根到底是:考試了怎么辦呢?課程改革已走到了第七個年頭,考試始終是一根有形無形的指揮棒在影響著我們每堂課的教學,在影響著我們的教學觀念與教學方法,甚至于影響我們的教學理想。其實我們都很清楚,這樣匆匆的進行課堂教學,雖然表面上看是完成了教學內容,但實際上學生并沒有掌握好,考試時真的出現(xiàn)時學生仍是無法解答,那么,這樣的教學豈不是也是無效的嗎?無效的教學是不是在浪費學生的精力與時間呢?這樣是不是有點自欺欺人了呢?想到這,我越感不安了

  因此,如果有機會再上這節(jié)課,就算前面能提高一點效率,節(jié)省一點時間,我也會省去后面的那部分內容,增加一些有趣味的生活問題,總結與反思本課的方法,從而使學生對本課學習掌握得更好,對自身的數(shù)學學習更有自信。

勾股定理教學反思11

  本學期我們學習了人教版第十八章《勾股定理》這一章節(jié),現(xiàn)在總結如下:

  一、 變學生被動學為主動學

  節(jié)課前一個星期教師布置給學生任務:查有關勾股定理的資料(可上網查,也可查閱報刊、書籍)。提前兩三天由幾位學生匯總(教師可適當指導)。這樣可使學生在上這節(jié)課前就對勾股定理歷史背景有全面的理解,從而使學生認識到勾股定理的重要性,學習勾股定理是非常必要的,激發(fā)學生的學習興趣,對學生也是一次愛國主義教育,培養(yǎng)民族自豪感,特別是“趙爽弦圖”激勵他們奮發(fā)向上。同時培養(yǎng)學生的自學能力及歸類總結能力。

  二、注重學生自主探究學習模式

  首先,創(chuàng)設情境,由實例引入,激發(fā)學生的學習興趣,然后通過動手操作、大膽猜想、勇于驗證等一系列自主探究、合作交流活動得出定理,并運用定理進一步鞏固提高。體現(xiàn)了學生是數(shù)學學習的主人,人人學有價值的數(shù)學,人人都能獲得必需的數(shù)學,不同的'人在數(shù)學上得到不同的發(fā)展。對于拼圖驗證,學生還沒有接觸過,所以在教學中教師給予學生適當指導與鼓勵。充分體現(xiàn)了教師是學生數(shù)學學習的組織者、引導者、合作者。

  三、培養(yǎng)學生多種能力,教會學生多種思維

  課前查資料,培養(yǎng)學生的自學能力及歸類總結能力;課上的探究培養(yǎng)學生的動手動腦的能力、觀察能力、猜想歸納總結的能力、合作交流的能力。課后加強學生自學能力,總結的能力。

  四、培養(yǎng)數(shù)學應用意識

  數(shù)學來源于生活,而又應用于生活。因此必須從實例引入,最后通過定理解決引例中的問題,并在定理的應用中,讓學生舉生活中的例子,充分體現(xiàn)了數(shù)學的應用價值。整節(jié)課都是在生生互動、師生互動的和諧氣氛中進行的,在教師的鼓勵、引導下學生進行了自主學習。學生上講臺表達自己的思路、解法,體驗了數(shù)形結合的數(shù)學思想方法,培養(yǎng)了細心觀察、認真思考的態(tài)度。

  五、不足之處:

  本節(jié)課拼圖驗證的方法以前學生沒接觸過,稍嫌吃力。舉勾股定理在生活中的例子時,學生思路不夠開闊。實際問題中,學生難將實際問題轉化為數(shù)學問題來解決,使得學過的知識和實際問題有點脫離,所以在后面的教學過程中要多培養(yǎng)學生實驗操作能力及應用拓展能力,使學生思路更開闊。

  新課程改革要求我們:將數(shù)學教學置身于學生自主探究與合作交流的數(shù)學活動中;將知識的獲取與能力的培養(yǎng)置身于學生形式各異的探索經歷中;關注學生探索過程中的情感體驗,并發(fā)展實踐能力及創(chuàng)新意識。為學生的終身學習及可持續(xù)發(fā)展奠定堅實的基礎?傊虒W中要多思考,多反思,真真切切讓我們的學生學好數(shù)學,將數(shù)學學好。

勾股定理教學反思12

  勾股定理的探索和證明蘊含著豐富的數(shù)學思想和數(shù)學方法,是培養(yǎng)學生良好思維品質的最佳載體。它以簡潔優(yōu)美的圖形結構,豐富深刻的內涵刻畫了自然界的和諧統(tǒng)一的關系,是數(shù)形結合的完美典范。著名數(shù)學家華羅庚就曾提出把“數(shù)形關系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進行第一次“談話”的語言。為讓學生通過對這節(jié)課的學習得到更好的歷練,在教學時,特別注重從以下幾個方面入手:

  一、注重知識的自然生發(fā)。

  傳統(tǒng)的教學中,教師往往喜歡壓縮理論傳授過程,用充足的時間做練習,以題代講,搞題海戰(zhàn)術。但從學生的發(fā)展來著,如果壓縮數(shù)學知識的形成過程,不講究知識的自然生發(fā),學生獲取知識的過程是被動的,形成的體系也是孤立的,長此以往,學生必將錯過或失去思維發(fā)展和能力提高的機遇。在這節(jié)課上,不刻意追求所謂的進度,更沒有直接給出勾股定理,而是組織學生開展畫一畫、看一看、想一想、猜一猜、拼一拼的活動,學生在活動思考、交流、展示中,逐漸的形成了對知識的自我認識和自我感悟。這樣做不僅能幫助學生牢固掌握勾股定理,更重要的是使學生體會用自己所學的舊知識而獲取新知識過程,使他們獲得成功的喜悅,增強了學生主動性,同時他們的思維能力在知識自然形成的過程中不斷發(fā)展。

  二、注重數(shù)學課上的操作性學習

  操作性學習是自主探究性學習有效途徑之一,學生通過在實踐活動中的感受和體驗,有利于幫助學生理解和掌握抽象的數(shù)學知識。在這節(jié)課上,首先讓學生動手畫直角三角形,得出研究題材,然后又讓學生利用四個直角三角形拼一拼,驗證猜想。這樣充分的調動了學生的手、口、腦等多種感官參與數(shù)學學習活動,既享受了操作的樂趣,又培養(yǎng)了學生的動手能力,加深了對知識的理解。

  三、注重問題設計的開放性

  課堂教學是教師組織、引導、參與和學生自主、合作、探究學習的雙邊活動。這其中教師的“引導”起著關鍵作用。這里的“引導”,很大程度上靠設疑提問來實現(xiàn)。在教學實踐中,問題設計要具有開放性。因為開放性問題更有利于培養(yǎng)學生的創(chuàng)造性思維、體現(xiàn)學生的主體意識和個性差異。本節(jié)課在設計涂鴉直角三角形時,安排學生在方格紙上任意涂鴉一個直角三角形;在設計拼圖驗證環(huán)節(jié)時,安排學生任意拼出一個正方形或直角梯形,有意沒指定畫一個具體邊長的直角三角形和正方形,就是不想對學生的思維給出太多的限制條件,給出更多的想象和創(chuàng)造空間。雖然探究的時間會更長,但這更符合實際知識的產生環(huán)境,學生只有在這樣的環(huán)境下進行創(chuàng)造、發(fā)現(xiàn)和磨練,能力素養(yǎng)才會得到更有效的歷練。

  四、注重讓學生經歷完整的數(shù)學知識的.發(fā)現(xiàn)過程。

  新《數(shù)學課程標準》在關于課程目標的闡述中,首次大量使用了"經歷(感受)、體驗(體會)、探索"等刻畫數(shù)學活動水平的過程性目標動詞,就是要求在數(shù)學學習的過程中,讓學生經歷知識與技能形成與鞏固過程,經歷數(shù)學思維的發(fā)展過程,經歷應用數(shù)學能力解決問題的過程,從而形成積極的數(shù)學情感與態(tài)度。教學從學生感興趣的涂鴉開始,再經歷觀察、分析、猜想、驗證的全過程,讓學生充分的經歷了完整的數(shù)學知識的發(fā)現(xiàn)過程,使學生獲得對數(shù)學理解的同時,在知識技能、思維能力以及情感態(tài)度等多方面都得到了進步和發(fā)展。

  如果有機會再上這節(jié)課,我想我會投入更多的精力對學生可能會給出的答案進行預想,以便在課堂上給予學生更多的啟迪,讓他們走的更遠。一堂課,雖已結束,但對于生命課堂的領悟這條路,還有很長的路要走,我將繼續(xù)上下求索,做學生更好的支點。

勾股定理教學反思13

  反思之一:教學觀念的轉變。

  “教師教,學生聽,教師問,學生答,教師出題,學生做”的傳統(tǒng)教學摸模式,已嚴重阻礙了現(xiàn)代教育的發(fā)展。這種教育模式,不但無法培養(yǎng)學生的實踐能力,而且會造成機械的學習知識,形成懶惰、空洞的學習態(tài)度,形成數(shù)學的呆子,就像有的大學畢業(yè)生都不知道1平方米到底有多大?因此,《新課標》要求老師一定要改變角色,變主角為配角,把主動權交給學生,讓學生提出問題,動手操作,小組討論,合作交流,把學生想到的,想說的想法和認識都讓他們盡情地表達,然后教師再進行點評與引導,這樣做會有許多意外的收獲,而且能充分發(fā)揮挖掘每個學生的潛能,久而久之,學生的綜合能力就會與日劇增。上這節(jié)課前教師可以給學生布置任務:查閱有關勾股定理的資料(可上網查,也可查閱報刊、書籍),提前兩三天由幾位學生匯總(教師可適當指導)。這樣可使學生在上這節(jié)課前就對勾股定理歷史背景有全面的理解,從而使學生認識到勾股定理的重要性,學習勾股定理是非常必要的,激發(fā)學生的學習興趣,對學生也是一次愛國主義教育,培養(yǎng)民族自豪感,激勵他們奮發(fā)向上,同時培養(yǎng)學生的自學能及歸類總結能力。

  反思之二:教學方式的轉變。

  學生學會了數(shù)學知識,卻不會解決與之有關的實際問題,造成了知識學習和知識應用的脫節(jié),感受不到數(shù)學與生活的聯(lián)系,這是當今課堂教學存在的普遍問題,對于學生實踐能力的培養(yǎng)非常不利的。現(xiàn)在的數(shù)學教學到處充斥著過量的、重復的題目訓練。我認為真正的教學方式的轉變要體現(xiàn)在這兩個方面:一是要關注學生學習的過程。首先要關注學生是否積極參加探索勾股定理的活動,關注學生能否在活動中積思考,能夠探索出解決問題的方法,能否進行積極的聯(lián)想(數(shù)形結合)以及學生能否有條理的表達活動過程和所獲得的結論等;同時要關注學生的拼圖過程,鼓勵學生結合自己所拼得的正方形驗證勾股定理。二是要關注學生學習的知識性及其實際應用。本節(jié)課的主要目的是掌握勾股定理,體會數(shù)形結合的思想,F(xiàn)在往往是學生知道了勾股定理而不知道在實際生活中如何運用勾股定理,我們在學生了解勾股定理以后可以出一個類似于《九章算術》中的應用題:在平靜的湖面上,有一棵水草,它高出水面3分米,一陣風吹來,水草被吹到一邊,草尖與水面平齊,已知水草移動的水平距離為6分米,問這里的水深是多少?

  教學方式的轉變在關注知識的形成同時,更加關注知識的應用,特別是所學知識在生活中的應用,真正起到學有所用而不是枯燥的理論知識。這一點上在新課標中體現(xiàn)的尤為明顯。

  反思之三:多媒體的重要輔助作用。

  課堂教學中要正確地、充分地引導學生探究知識的形成過程,應創(chuàng)造讓學生主動參與學習過程的條件,培養(yǎng)學生的觀察能力、合作能力、探究能力,從而達到提高學生數(shù)學素質的目的。多媒體教學的優(yōu)化組合,在幫助學生形成知識的過程中扮演著重要的角色。通過面積計算來猜想勾股定理或是通過面積割補來驗證勾股定理并不是所有的學生都是很清楚,教者可通過多媒體來演示其過程不僅使知識的形成更加的直觀化,而且可以提高學生的學習興趣。

  反思之四:轉變教學的評價方式,提高學生的自信心。

  評價對于學生來說有兩種評價的'方式。一種是以他人評價為基礎的,另一種是以自我評價為基礎的。每個人素質生成都經歷著這兩種評價方式的發(fā)展過程,經歷著一個從學會評價他人到學會評價自己的發(fā)展過程。實施他人評價,完善素質發(fā)展的他人監(jiān)控機制很有必要。每個人都要以他人為鏡,從他人這面鏡子中照見自我。但發(fā)展的成熟、素質的完善主要建立在自我評價的基礎上,是以素質的自我評價、自我調節(jié)、自我教育為標志的。因此要改變單純由教師評價的現(xiàn)狀,提倡評價主體的多元化,把教師評價、同學評價、家長評價及學生的自評相結合。

  在本節(jié)課的教學中,老師可以從多方面對學生進行合適的評價。如以學生的課前知識準備是一種態(tài)度的評價,上課的拼圖能力是一種動手能力的評價,對所結論的分析是對猜想能力的一種評價,對實際問題的分析是轉化能力的一種評價等等。

勾股定理教學反思14

  星期三上午第一節(jié)講了《勾股定理逆定理》第一課時,課后效果和我預想的一樣,由于探究內容偏多,課堂容量大,后半部分感覺倉促,留給學生的思考時間顯得不足。

  回頭反思,這節(jié)課的設計思路比較合理:定理來源于生活,服務于生活。我由勾股定理引出一道生活實際問題,引起學生的求知欲,然后和學生分三種方法探究,得出“勾股定理逆定理”,經過課堂練習夯實基礎,最后利用新知解決開課時提出的`生活實際問題,首尾呼應,學以致用。

  對互逆命題,原命題,逆命題,互逆定理,逆定理等概念的講解可隨題點化,而詳細講解、隨堂練習可做為第二課時的重點,讓出更多時間來做勾股定理逆定理的相應練習,特別是應加大有靈活度和難度生活習題的練習,拓寬學生知識面,提高學生的發(fā)散思維能力。

  總之,課堂設計要做到一個“狠”字,該刪除的就刪,教學目標不可貪多。我們圍繞授課重點做相應探究,練習,次重點可放在下個課時重點講解,探究時間要預留充足,相應練習寧精勿多,注重雙基才是根本。

勾股定理教學反思15

  從內容上看勾股定理只有一句話:"兩直角邊的平方和等于斜邊的平方",但教材安排了三個課時,從教學目標上分析總結:

 。ㄒ唬┍竟(jié)課在知識技能上要求掌握勾股定理的內容,并能用勾股定理解決一些實際問題;

 。ǘ┰谶^程和方法上

  1。讓學經歷探究、測量、拼圖、發(fā)現(xiàn)、驗證應用的過程,讓學生感受數(shù)形結合、轉化和從特殊到一般的數(shù)學思想。

  2。通過動手操作、小組合作、共同思考探索勾股定理證明的'過程,讓學生掌握數(shù)學圖形的割補技巧和代數(shù)恒等關系在幾何中的靈活運用。

 。ㄈ┰谇楦袘B(tài)度價值觀上

  1。讓學生體驗探究的樂趣,培養(yǎng)學生解決問題能力和克服苦難的決心,感悟數(shù)與形之間的美妙結合,激發(fā)學生學習數(shù)學的自信心。

  2。通過介紹勾股定理的歷史小故事,增強學生的民族自豪感,激發(fā)學生努力學習的意志。

【勾股定理教學反思】相關文章:

八年級勾股定理教學反思04-17

初中數(shù)學勾股定理教案08-22

勾股定理教案(精選20篇)09-27

勾股定理教案(通用15篇)10-21

勾股定理的證明方法及常用公式02-03

夜色教學反思教學反思11-25

匆匆教學反思教學反思11-17

音樂教學反思教學反思03-07

池上教學反思教學反思通用03-03

蕭教學反思教學反思參考12-07