- 相關(guān)推薦
定積分證明題方法總結(jié)
總結(jié)是把一定階段內(nèi)的有關(guān)情況分析研究,做出有指導(dǎo)性的經(jīng)驗方法以及結(jié)論的書面材料,它能使我們及時找出錯誤并改正,不如立即行動起來寫一份總結(jié)吧。但是總結(jié)有什么要求呢?以下是小編整理的定積分證明題方法總結(jié),僅供參考,大家一起來看看吧。
定積分證明題方法總結(jié)1
摘要:結(jié)合實例分析介紹了不定積分的四種基本計算方法。為使學(xué)生熟練掌握,靈活運用積分方法,本文將高等數(shù)學(xué)中計算不定積分的常用方法,簡單進行了整理歸類。
關(guān)鍵詞:積分方法 第一類換元法第二類換元法 分部積分法 不定積分是高等數(shù)學(xué)中積分學(xué)的基礎(chǔ),對不定積分的理解與掌握的好壞直接影響到該課程的學(xué)習(xí)和掌握。熟練掌握不定積分的理論與運算方法,不但能使學(xué)生進一步鞏固前面所學(xué)的導(dǎo)數(shù)與微分的知識,而且也將為學(xué)習(xí)定積分,微分方程等相關(guān)知識打好基礎(chǔ)。在高等數(shù)學(xué)中,函數(shù)的概念與定義與初等數(shù)學(xué)相比發(fā)生了很多的變化,從有限到無限,從確定到不確定,計算結(jié)果也可能不唯一,但計算方法與計算技巧顯得更加重要。這些都在不定積分的計算中體會的淋漓盡致。對不定積分的求解方法進行簡單的歸類,不但使其計算方法條理清楚,而且有助于對不定積分概念的理解,提高學(xué)習(xí)興趣,對學(xué)好積分具有一定的促進作用。
1 直接積分法
直接積分法就是利用不定積分的定義,公式與積分基本性質(zhì)求不定積分的方法。直接積分法重要的是把被積函數(shù)通過代數(shù)或三角恒等式變形,變?yōu)榉e分表中能直接計算的'公式,利用積分運算法則,在逐項積分。
一、原函數(shù)與不定積分的概念
定義1.設(shè)f(x)是定義在某區(qū)間的已知函數(shù),若存在函數(shù)F(x),使得F(x)或dF
f(x)
(x)f(x)dx
,則稱F(x)為f(x)的一個原函數(shù)
定義2.函數(shù)
f(x)的全體原函數(shù)F(x)C叫做f(x)的不定積分,,記為:
f(x)dxF(x)C
f(x)叫做被積函數(shù) f(x)dx叫做被積表達式C叫做積分常數(shù)
“
其中
”叫做積分號
二、不定積分的性質(zhì)和基本積分公式
性質(zhì)1. 不定積分的導(dǎo)數(shù)等于被積函數(shù),不定積分的微分等于被積表達式,即
f(x)dxf(x);df(x)dxf(x)dx.
性質(zhì)2. 函數(shù)的導(dǎo)數(shù)或微分的不定積分等于該函數(shù)加上一個任意函數(shù),即
f(x)dxf(x)C,
或df(x)f(x)C
性質(zhì)3. 非零的常數(shù)因子可以由積分號內(nèi)提出來,即
kf(x)dxkf(x)dx
(k0).
性質(zhì)4. 兩個函數(shù)的代數(shù)和的不定積分等于每個函數(shù)不定積分的代數(shù)和,即
f(x)g(x)dxf(x)dxg(x)dx
基本積分公式
(1)kdxkxC(k為常數(shù))
(2)xdx
1
1
x
1
C
(1)
1
(3)xlnxC
x
(4)exdxexC
(6)cosxdxsinxC (8)sec2xdxtanxC (10)secxtanxdxsecxC (12)secxdxlnsecxtanxC (14)(16)
11x
11x
2
(5)a
x
dx
a
x
lna
C
(7)sinxdxcosxC (9)csc2xdxcotxC
(11)
cscxcotxdxcscxC
(13)cscxdxlncscxcotxC (15)
1x
2
2
xarctanxC
xarcsinxC
xarcsinxC
三、換元積分法和分部積分法
定理1. 設(shè)(x)可導(dǎo),并且f(u)duF(u)C. 則有
f[(x)](x)dxF(u)C
湊微分
f[(x)]d(x)
令u(x)
f(u)du
代回u(x)
F((x))C
該方法叫第一換元積分法(integration by substitution),也稱湊微分法. 定理2.設(shè)x數(shù)F
(t)是可微函數(shù)且(t)0,若f((t))(t)具有原函
(t),則
xt換元
fxdx
fttdt
積分
FtC
t
1
x
回代
1
FxC.
該方法叫第二換元積分法
定積分證明題方法總結(jié)2
一、不定積分計算方法
1.湊微分法
2.裂項法
3.變量代換法
1)三角代換
2)根冪代換
3)倒代換
4.配方后積分
5.有理化
6.和差化積法
7.分部積分法(反、對、冪、指、三)
8.降冪法
二、定積分的計算方法
1.利用函數(shù)奇偶性
2.利用函數(shù)周期性
3. 參考不定積分計算方法
三、定積分與極限
1.積和式極限
2.利用積分中值定理或微分中值定理求極限
3.洛必達法則
4.等價無窮小
四、定積分的估值及其不等式的應(yīng)用
1.不計算積分,比較積分值的大小
1)比較定理:若在同一區(qū)間[a,b]上,總有
f(x)>=g(x),則>= ()dx
2)利用被積函數(shù)所滿足的不等式比較之a(chǎn))
b)當0 2.估計具體函數(shù)定積分的值 積分估值定理:設(shè)f(x)在[a,b]上連續(xù),且其最大值為M,最小值為m則 M(b-a)<= <=M(b-a) 3.具體函數(shù)的定積分不等式證法 1)積分估值定理 2)放縮法 3)柯西積分不等式 ≤ % 4.抽象函數(shù)的定積分不等式的`證法 1)拉格朗日中值定理和導(dǎo)數(shù)的有界性 2)積分中值定理 3)常數(shù)變易法 4)利用泰勒公式展開法 五、變限積分的導(dǎo)數(shù)方法 1、經(jīng)驗總結(jié) (1)定積分的定義:分割—近似代替—求和—取極限 (2)定積分幾何意義: ①f(x)dx(f(x)0)表示y=f(x)與x軸,x=a,x=b所圍成曲邊梯形的面積ab ②f(x)dx(f(x)0)表示y=f(x)與x軸,x=a,x=b所圍成曲邊梯形的面積的相a 反數(shù) (3)定積分的基本性質(zhì): ①kf(x)dx=kf(x)dx aabb 、赱f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa ③f(x)dx=f(x)dx+f(x)dx aac (4)求定積分的方法:baf(x)dx=limf(i)xi ni=1nbbbbbcb 、俣x法:分割—近似代替—求和—取極限②利用定積分幾何意義 ’③微積分基本公式f(x)F(b)-F(a),其中F(x)=f(x) ba 一、不定積分的概念和性質(zhì) 若F(x)f(x),則f(x)dxF(x)C, C為積分常數(shù)不可丟! 性質(zhì)1f(x)dxf(x)或 df(x)dxf(x)dx或 df(x)dxf(x) dx 性質(zhì)2F(x)dxF(x)C或dF(x)F(x)C 性質(zhì)3[f(x)g(x)]dx 或[f(x)g(x)]dx 二、基本積分公式或直接積分法 基本積分公式 f(x)dxg(x)dx g(x)dx;kf(x)dxkf(x)dx. f(x)dx kdxkxC xxdx1x1C(為常數(shù)且1)1xdxlnxC ax edxeCadxlnaC xx cosxdxsinxCsinxdxcosxC dxdx22tanxCsecxdxcsccos2xsin2xxdxcotxC secxtanxdxsecxCcscxcotxdxcscxC dxarctanxCarccotx C()1x2arcsinxC(arccosxC) 直接積分法:對被積函數(shù)作代數(shù)變形或三角變形,化成能直接套用基本積分公式。 代數(shù)變形主要是指因式分解、加減拆并等;三角變形主要是指三角恒等式。 三、換元積分法: 1.第一類換元法(湊微分法) g(x)dxf((x))(x)dxf((x))d(x) 注 (1)常見湊微分: u(x)f(u)du[F(u)C]u(x). 111dxd(axc), xdxd(x2c),2dc), dxd(ln|x| c) a2x1dxd(arctanx)d(arccotxd(arcsinx)d(arccosx) 1+x2 (2)適用于被積函數(shù)為兩個函數(shù)相乘的情況: 若被積函數(shù)為一個函數(shù),比如:e2xdxe2x1dx, 若被積函數(shù)多于兩個,比如:sinxcosx1sin4xdx,要分成兩類; (3)一般選擇“簡單”“熟悉”的那個函數(shù)寫成(x); (4)若被積函數(shù)為三角函數(shù)偶次方,降次;奇次方,拆項; 2.第二類換元法 f(x)dxx(t)f((t))(t)dtf((t))(t)dtt1(x)G(t)Ct1(x) 常用代換類型: (1) 對被積函數(shù)直接去根號; (2) 到代換x1; t (3) 三角代換去根號 x atantxasect、 xasint(orxacost) f(xdx,t f(xx,x asect f(xx,xasint f(xx,xatant f(ax)dx,ta x f(xx,t 三、分部積分法:uvdxudvuvvduuvuvdx. 注 (1)u的`選取原則:按“ 反對冪三指” 的順序,誰在前誰為u,后面的為v; (2)uvdx要比uvdx容易計算; (3)適用于兩個異名函數(shù)相乘的情況,若被積函數(shù)只有一個,比如: arcsinx1dx, u v (4)多次使用分部積分法: uu求導(dǎo) vv積分(t; 1、原函數(shù)存在定理 ●定理如果函數(shù)f(x)在區(qū)間I上連續(xù),那么在區(qū)間I上存在可導(dǎo)函數(shù)F(x),使對任一x∈I都有F’(x)=f(x);簡單的說連續(xù)函數(shù)一定有原函數(shù)。 ●分部積分法 如果被積函數(shù)是冪函數(shù)和正余弦或冪函數(shù)和指數(shù)函數(shù)的乘積,就可以考慮用分部積分法,并設(shè)冪函數(shù)和指數(shù)函數(shù)為u,這樣用一次分部積分法就可以使冪函數(shù)的冪降低一次。如果被積函數(shù)是冪函數(shù)和對數(shù)函數(shù)或冪函數(shù)和反三角函數(shù)的乘積,就可設(shè)對數(shù)和反三角函數(shù)為u。 2、對于初等函數(shù)來說,在其定義區(qū)間上,它的原函數(shù)一定存在,但原函數(shù)不一定都是初等函數(shù)。 定積分 1、定積分解決的典型問題 (1)曲邊梯形的面積(2)變速直線運動的路程 2、函數(shù)可積的充分條件 ●定理設(shè)f(x)在區(qū)間[a,b]上連續(xù),則f(x)在區(qū)間[a,b]上可積,即連續(xù)=>可積。 ●定理設(shè)f(x)在區(qū)間[a,b]上有界,且只有有限個間斷點,則f(x)在區(qū)間[a,b]上可積。 3、定積分的'若干重要性質(zhì) ●性質(zhì)如果在區(qū)間[a,b]上f(x)≥0則∫abf(x)dx≥0。 ●推論如果在區(qū)間[a,b]上f(x)≤g(x)則∫abf(x)dx≤∫abg(x)dx。 ●推論|∫abf(x)dx|≤∫ab|f(x)|dx。 ●性質(zhì)設(shè)M及m分別是函數(shù)f(x)在區(qū)間[a,b]上的最大值和最小值,則m(b-a)≤∫abf(x)dx≤M(b-a),該性質(zhì)說明由被積函數(shù)在積分區(qū)間上的最大值及最小值可以估計積分值的大致范圍。 ●性質(zhì)(定積分中值定理)如果函數(shù)f(x)在區(qū)間[a,b]上連續(xù),則在積分區(qū)間[a,b]上至少存在一個點,使下式成立:∫abf(x)dx=f()(b-a)。 4、關(guān)于廣義積分 設(shè)函數(shù)f(x)在區(qū)間[a,b]上除點c(a 定積分的應(yīng)用 1、求平面圖形的面積(曲線圍成的面積) ●直角坐標系下(含參數(shù)與不含參數(shù)) ●極坐標系下(r,θ,x=rcosθ,y=rsinθ)(扇形面積公式S=R2θ/2) ●旋轉(zhuǎn)體體積(由連續(xù)曲線、直線及坐標軸所圍成的面積繞坐標軸旋轉(zhuǎn)而成)(且體積V=∫abπ[f(x)]2dx,其中f(x)指曲線的方程) ●平行截面面積為已知的立體體積(V=∫abA(x)dx,其中A(x)為截面面積) ●功、水壓力、引力 ●函數(shù)的平均值(平均值y=1/(b-a)*∫abf(x)dx) 一、原函數(shù) 定義1 如果對任一xI,都有 F(x)f(x) 或 dF(x)f(x)dx 則稱F(x)為f(x)在區(qū)間I 上的原函數(shù)。 例如:(sinx)cosx,即sinx是cosx的原函數(shù)。 [ln(xx2) 原函數(shù)存在定理:如果函數(shù)f(x)在區(qū)間I 上連續(xù),則f(x)在區(qū)間I 上一定有原函數(shù),即存在區(qū)間I 上的可導(dǎo)函數(shù)F(x),使得對任一xI,有F(x)f(x)。 注1:如果f(x)有一個原函數(shù),則f(x)就有無窮多個原函數(shù)。 設(shè)F(x)是f(x)的原函數(shù),則[F(x)C]f(x),即F(x)C也為f(x)的原函數(shù),其中C為任意常數(shù)。 注2:如果F(x)與G(x)都為f(x)在區(qū)間I 上的原函數(shù),則F(x)與G(x)之差為常數(shù),即F(x)G(x)C(C為常數(shù)) 注3:如果F(x)為f(x)在區(qū)間I 上的一個原函數(shù),則F(x)C(C為任意常數(shù))可表達f(x)的任意一個原函數(shù)。 1x2,即ln(xx2)是1x2的原函數(shù)。 二、不定積分 定義2 在區(qū)間I上,f(x)的帶有任意常數(shù)項的原函數(shù),成為f(x)在區(qū)間I上的'不定積分,記為f(x)dx。 如果F(x)為f(x)的一個原函數(shù),則 f(x)dxF(x)C,(C為任意常數(shù)) 三、不定積分的幾何意義 圖 5—1 設(shè)F(x)是f(x)的一個原函數(shù),則yF(x)在平面上表示一條曲線,稱它為f(x)f(x)的不定積分表示一族積分曲線,它們是由f(x)的某一條積分曲線沿著y軸方向作任意平行移動而產(chǎn)生的所有積分曲線組成的.顯然,族中的每一條積分曲線在具有同一橫坐標x的點處有互相平行的切線,其斜率都等于f(x). 在求原函數(shù)的具體問題中,往往先求出原函數(shù)的一般表達式y(tǒng)F(x)C,再從中確定一個滿足條件 y(x0)y0 (稱為初始條件)的原函數(shù)yy(x).從幾何上講,就是從積分曲線族中找出一條通過點(x0,y0)的積分曲線. 四、不定積分的性質(zhì)(線性性質(zhì)) [f(x)g(x)]dxf(x)dxg(x)dx k為非零常數(shù)) kf(x)dxkf(x)dx( 五、基本積分表 ∫ a dx = ax + C,a和C都是常數(shù) ∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a為常數(shù)且 a ≠ -1 ∫ 1/x dx = ln|x| + C ∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1 ∫ e^x dx = e^x + C ∫ cosx dx = sinx + C ∫ sinx dx = - cosx + C ∫ cotx dx = ln|sinx| + C = - ln|cscx| + C ∫ tanx dx = - ln|cosx| + C = ln|secx| + C ∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C ∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C ∫ sec^2(x) dx = tanx + C ∫ csc^2(x) dx = - cotx + C ∫ secxtanx dx = secx + C ∫ cscxcotx dx = - cscx + C ∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C ∫ dx/√(a^2 - x^2) = arcsin(x/a) + C ∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C ∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C ∫ √(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C ∫ √(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C ∫ √(a^2 - x^2) dx = (x/2)√(a^2 - x^2) + (a^2/2)arcsin(x/a) + C 六、第一換元法(湊微分) 設(shè)F(u)為f(u)的原函數(shù),即F(u)f(u) 或 f(u)duF(u)C 如果 u(x),且(x)可微,則 dF[(x)]F(u)(x)f(u)(x)f[(x)](x) dx 即F[(x)]為f[(x)](x)的原函數(shù),或 f[(x)](x)dxF[(x)]C[F(u)C]u(x)[f(u)du]因此有 定理1 設(shè)F(u)為f(u)的原函數(shù),u(x)可微,則 f[(x)](x)dx[f(u)du] 公式(2-1)稱為第一類換元積分公式。 u(x)u(x) (2-1) f[(x)](x)dxf[(x)]d(x)[f(u)du]u(x) 1f(axb)d(axb)1[f(u)du]f(axb)dxuaxb 【定積分證明題方法總結(jié)】相關(guān)文章: 超市積分制度05-06 如何學(xué)好初中數(shù)學(xué)證明題05-25 琴行積分獎勵制度02-15 證明的方法總結(jié)06-25 定損員年終總結(jié)01-21 信用卡刷積分技巧10-28 彩票積分活動廣告語12-29 積分制管理制度02-23 如何辦理基金定投08-06定積分證明題方法總結(jié)3
定積分證明題方法總結(jié)4
定積分證明題方法總結(jié)5